论文标题

使用全硅元元观察在野外进行的热计算成像

Foveated Thermal Computational Imaging in the Wild Using All-Silicon Meta-Optics

论文作者

Saragadam, Vishwanath, Han, Zheyi, Boominathan, Vivek, Huang, Luocheng, Tan, Shiyu, Fröch, Johannes E., Böhringer, Karl F., Baraniuk, Richard G., Majumdar, Arka, Veeraraghavan, Ashok

论文摘要

Foveated Imaging在情境意识(视野)和分辨率之间提供了更好的权衡,并且由于热传感器的大小,重量,功率和成本,在长波长红外机制中至关重要。我们通过利用元光前端区分不同极化状态和重建捕获的图像/视频的计算后端来区分元素的能力来证明计算中的成像。前端是一个三元素的视频:我们称之为“ foveal”元素的第一个元素是一种金属元素,将S偏振光聚焦在$ f_1 $的距离上而不会影响p偏振光;我们称为“ perifoveal”元素的第二个元素是另一个金属元素,它在$ f_2 $的距离上聚焦在$ f_2 $的距离的情况下而不会影响s偏振光。第三个元素是自由旋转的偏振器,它会动态地改变两个偏振状态之间的混合比。凹起元件(焦距= 150mm;直径= 75mm)和perifoveal元件(焦距= 25mm;直径= 25mm)均被制造为极化敏感的,全硅,元表面,导致大孔径,1:6绒毛扩张,热成像能力。然后,计算后端在将所得的多路复用图像或视频分离为由高分辨率中心和较低分辨率的大视野上下文组成的曲线图像之前,在将所得的多路复用图像或视频分开之前使用了深层图像。我们构建了一个初始的原型系统,并在野外演示了每秒实时,热量,散发图像和视频捕获的12帧。

Foveated imaging provides a better tradeoff between situational awareness (field of view) and resolution and is critical in long-wavelength infrared regimes because of the size, weight, power, and cost of thermal sensors. We demonstrate computational foveated imaging by exploiting the ability of a meta-optical frontend to discriminate between different polarization states and a computational backend to reconstruct the captured image/video. The frontend is a three-element optic: the first element which we call the "foveal" element is a metalens that focuses s-polarized light at a distance of $f_1$ without affecting the p-polarized light; the second element which we call the "perifoveal" element is another metalens that focuses p-polarized light at a distance of $f_2$ without affecting the s-polarized light. The third element is a freely rotating polarizer that dynamically changes the mixing ratios between the two polarization states. Both the foveal element (focal length = 150mm; diameter = 75mm), and the perifoveal element (focal length = 25mm; diameter = 25mm) were fabricated as polarization-sensitive, all-silicon, meta surfaces resulting in a large-aperture, 1:6 foveal expansion, thermal imaging capability. A computational backend then utilizes a deep image prior to separate the resultant multiplexed image or video into a foveated image consisting of a high-resolution center and a lower-resolution large field of view context. We build a first-of-its-kind prototype system and demonstrate 12 frames per second real-time, thermal, foveated image, and video capture in the wild.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源