论文标题

图形卷积网络,用于丢失值的流量预测

Graph Convolutional Networks for Traffic Forecasting with Missing Values

论文作者

Zuo, Jingwei, Zeitouni, Karine, Taher, Yehia, Garcia-Rodriguez, Sandra

论文摘要

交通预测最近引起了广泛关注。实际上,流量数据通常包含由于传感器或通信错误而导致的缺失值。流量数据中的时空特征为处理这种缺失值带来了更多挑战,为此,经典技术(例如,数据归档)受到限制:1)在时间轴中,可以随机或连续丢失这些值; 2)在空间轴中,丢失值可以同时在一个单个传感器上或多个传感器上发生。最新由图形神经网络提供动力的模型可以满足流量预测任务的性能。但是,其中很少有适用于如此复杂的缺失值上下文。为此,我们提出了GCN-M,这是一个图形卷积网络模型,具有在时空上下文中处理复杂缺失值的能力。特别是,我们共同对基于注意力的内存网络中的本地时空特征和全球历史模式共同对缺失的价值处理和流量预测任务进行建模。我们提出了一个基于学习的本地全球特征的动态图学习模块。现实数据集的实验结果显示了我们提出的方法的可靠性。

Traffic forecasting has attracted widespread attention recently. In reality, traffic data usually contains missing values due to sensor or communication errors. The Spatio-temporal feature in traffic data brings more challenges for processing such missing values, for which the classic techniques (e.g., data imputations) are limited: 1) in temporal axis, the values can be randomly or consecutively missing; 2) in spatial axis, the missing values can happen on one single sensor or on multiple sensors simultaneously. Recent models powered by Graph Neural Networks achieved satisfying performance on traffic forecasting tasks. However, few of them are applicable to such a complex missing-value context. To this end, we propose GCN-M, a Graph Convolutional Network model with the ability to handle the complex missing values in the Spatio-temporal context. Particularly, we jointly model the missing value processing and traffic forecasting tasks, considering both local Spatio-temporal features and global historical patterns in an attention-based memory network. We propose as well a dynamic graph learning module based on the learned local-global features. The experimental results on real-life datasets show the reliability of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源