论文标题

通过近距离方法验证神经网络控制器为不确定系统的系统验证:鲁棒性分析和安全验证

Validation of Neural Network Controllers for Uncertain Systems Through Keep-Close Approach: Robustness Analysis and Safety Verification

论文作者

Zenati, Abdelhafid, Aouf, Nabil

论文摘要

神经控制系统技术的主要挑战之一是对神经网络(NN)控制器的安全性和鲁棒性的验证和认证,以针对各种不确定性,包括未经模型的动态,非线性和时间延迟。提供此类验证保证的一种方法是,当其输入在有限的集合中变化时,靠近强大执行的闭环参考模型的输出时,将其输入变化时,将闭环系统输出维护。本文提出了一种新的方法,可以通过NN控制器分析不确定反馈系统的性能和鲁棒性。由于分析此类系统的复杂性,该问题被重新构成,因为使用神经控制器和理想的闭环参考模型之间的动态跟踪误差问题。然后,控制器误差的近似是通过采用差分平均值定理(DMV)和积分二次约束(IQCS)技术的特征。此外,对于误差动态系统的输出,得出了相对积分的正方形误差(RISE)和最高方误差(SSE)有限集。然后,通过将Lyapunov理论与基于IQC的技术集成在一起来进行分析。由此产生的最坏情况分析为用户提供了有关参考闭环模型与神经控制器控制的不确定系统之间最坏情况和SSE最坏情况的先验知识。

Among the major challenges in neural control system technology is the validation and certification of the safety and robustness of neural network (NN) controllers against various uncertainties including unmodelled dynamics, nonlinearities, and time delays. One way in providing such validation guarantees is to maintain the closed-loop system output with a NN controller when its input changes within a bounded set, close to the output of a robustly performing closed-loop reference model. This paper presents a novel approach to analysing the performance and robustness of uncertain feedback systems with NN controllers. Due to the complexity of analysing such systems, the problem is reformulated as the problem of dynamical tracking errors between the closed-loop system with a neural controller and an ideal closed-loop reference model. Then, the approximation of the controller error is characterised by adopting the differential mean value theorem (DMV) and the Integral Quadratic Constraints (IQCs) technique. Moreover, the Relative Integral Square Error (RISE) and the Supreme Square Error (SSE) bounded set are derived for the output of the error dynamical system. The analysis is then performed by integrating Lyapunov theory with the IQCs-based technique. The resulting worst-case analysis provides the user a prior knowledge about the worst case of RISE and SSE between the reference closed-loop model and the uncertain system controlled by the neural controller.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源