论文标题

使用域灵感的时间图卷积神经网络预测土壤水分,以指导可持续作物管理

Forecasting Soil Moisture Using Domain Inspired Temporal Graph Convolution Neural Networks To Guide Sustainable Crop Management

论文作者

Azmat, Muneeza, Madondo, Malvern, Dipietro, Kelsey, Horesh, Raya, Bawa, Arun, Jacobs, Michael, Srinivasan, Raghavan, O'Donncha, Fearghal

论文摘要

气候变化,人口增长和水稀缺性对农业面临前所未有的挑战。该项目的目的是使用领域知识和机器学习来预测土壤水分,以实现可持续农业的作物管理决策。预测水文响应特征的传统方法需要大量的计算时间和专业知识。最近的工作已将机器学习模型作为预测水文响应特征的工具,但是这些模型忽略了传统的水文建模的关键组成部分,即在空间上关闭单位可以具有截然不同的水文响应。在传统的水文建模中,无论其空间近端如何,都将具有相似水文特性的单元分组在一起并共享模型参数。受此领域知识的启发,我们构建了一个新型的域启发的时间图卷积神经网络。我们的方法涉及基于时间变化的水文特性,为每个群集构建图形拓扑的聚类单元,并使用图形卷积和封闭的复发神经网络预测土壤水分。在美国东北部的一个案例研究中,我们已经培训,验证和测试了我们的现场尺度时间序列数据的方法,该数据包括大约99,000个水文响应单元,跨越了40年。与现有模型的比较说明了使用域启发的聚类与时间序列图神经网络的有效性。该框架正在作为无偿社会影响计划的一部分部署。受过训练的模型正在德克萨斯州中部的小型农场部署。

Climate change, population growth, and water scarcity present unprecedented challenges for agriculture. This project aims to forecast soil moisture using domain knowledge and machine learning for crop management decisions that enable sustainable farming. Traditional methods for predicting hydrological response features require significant computational time and expertise. Recent work has implemented machine learning models as a tool for forecasting hydrological response features, but these models neglect a crucial component of traditional hydrological modeling that spatially close units can have vastly different hydrological responses. In traditional hydrological modeling, units with similar hydrological properties are grouped together and share model parameters regardless of their spatial proximity. Inspired by this domain knowledge, we have constructed a novel domain-inspired temporal graph convolution neural network. Our approach involves clustering units based on time-varying hydrological properties, constructing graph topologies for each cluster, and forecasting soil moisture using graph convolutions and a gated recurrent neural network. We have trained, validated, and tested our method on field-scale time series data consisting of approximately 99,000 hydrological response units spanning 40 years in a case study in northeastern United States. Comparison with existing models illustrates the effectiveness of using domain-inspired clustering with time series graph neural networks. The framework is being deployed as part of a pro bono social impact program. The trained models are being deployed on small-holding farms in central Texas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源