论文标题
$ \ Mathbb z/p $ - 零属零deligne-mumford Space的共同体,$ 1+P $标记点
The $\mathbb Z/p$-equivariant cohomology of genus zero Deligne-Mumford space with $1+p$ marked points
论文作者
论文摘要
我们证明了纤维化$ \叠加{\ Mathcal m} _ {0,1+p} \ to e \ Mathbb z/p \ times _ {\ mathbb z/p} \ edimalline { $ e_2 $页。我们用它来证明:对于$ \ Mathbb z/p $ - equivariant的任何元素,带有$ \ mathbb f_p $ - 零deligne-mumford Space的$ 1+p $标记点的属性的同类元素,如果此元素是torsion,则该元素是不交流的。这得出的结论是,唯一的“有趣” $ \ mathbb z/p $ equivariant操作是Quantum steenrod Power操作。
We prove that the Serre spectral sequence of the fibration $\overline{\mathcal M}_{0, 1+p} \to E\mathbb Z/p \times_{\mathbb Z/p} \overline{\mathcal M}_{0, 1+p} \to B \mathbb Z/p$ collapses at the $E_2$ page. We use this to prove that: for any element of the $\mathbb Z/p$-equivariant cohomology with $\mathbb F_p$-coefficients of genus zero Deligne-Mumford space with $1+p$ marked points, if this element is torsion then it is non-equivariant. This concludes that the only "interesting" $\mathbb Z/p$-equivariant operations are quantum Steenrod power operations.