论文标题
使用高维分类输入进行高效和领域不足的逃避攻击
Towards Efficient and Domain-Agnostic Evasion Attack with High-dimensional Categorical Inputs
论文作者
论文摘要
我们的工作目标是搜索可行的对抗扰动,以攻击在域 - 不可思议的环境中具有高维分类输入的分类器。从本质上讲,这是NP坚硬的背包问题,随着特征维度的增加,勘探空间变得更大。没有域知识的帮助,通过启发式方法(例如分支机构)解决了这一问题,遇到了指数级的复杂性,但可以带来任意的不良攻击结果。我们通过基于多臂强盗的组合搜索的镜头来应对挑战。我们提出的方法,即壮举,将修改每个分类功能的修改为在多臂匪徒编程中拉动手臂。我们的目标是使用正交匹配追求(OPP)增强的上限绑定(UCB)勘探策略实现高效和有效的攻击。我们的理论分析界限了壮举的遗憾差距可以确保其实际攻击表现。在实证分析中,我们将壮举与其他不同应用程序的各种现实分类数据集相比,将壮举与其他最先进的域攻击方法进行了比较。实质性的实验观察证实了在不同应用方案中应用的壮举的预期效率和攻击效果。我们的工作进一步暗示了壮举在评估具有高维分类输入的分类系统的对抗性脆弱性方面的适用性。
Our work targets at searching feasible adversarial perturbation to attack a classifier with high-dimensional categorical inputs in a domain-agnostic setting. This is intrinsically an NP-hard knapsack problem where the exploration space becomes explosively larger as the feature dimension increases. Without the help of domain knowledge, solving this problem via heuristic method, such as Branch-and-Bound, suffers from exponential complexity, yet can bring arbitrarily bad attack results. We address the challenge via the lens of multi-armed bandit based combinatorial search. Our proposed method, namely FEAT, treats modifying each categorical feature as pulling an arm in multi-armed bandit programming. Our objective is to achieve highly efficient and effective attack using an Orthogonal Matching Pursuit (OMP)-enhanced Upper Confidence Bound (UCB) exploration strategy. Our theoretical analysis bounding the regret gap of FEAT guarantees its practical attack performance. In empirical analysis, we compare FEAT with other state-of-the-art domain-agnostic attack methods over various real-world categorical data sets of different applications. Substantial experimental observations confirm the expected efficiency and attack effectiveness of FEAT applied in different application scenarios. Our work further hints the applicability of FEAT for assessing the adversarial vulnerability of classification systems with high-dimensional categorical inputs.