论文标题

哈米尔顿港不连续的galerkin有限元方法

Port-Hamiltonian Discontinuous Galerkin Finite Element Methods

论文作者

Kumar, N., van der Vegt, J. J. W., Zwart, H. J.

论文摘要

哈米尔顿港(PH)系统制剂是一种几何概念,用于为各种物理系统制定保护法。分布式参数 - 港口 - 汉密尔顿公式模型的无限尺寸哈密顿动力系统,该系统具有非零的能量通过边界。在本文中,我们提出了一个新的pH-System不连续Galerkin(DG)离散框架的新框架。将DG方法与pH-系统联系起来会产生兼容的结构,以保留有限元离散化以及涉及变量的几何形状和功能空间的灵活性。此外,哈米尔顿港公式的配方使边界端口明确,这使得结构和功率保持数值通量的选择更加容易。我们陈述了不连续的有限元stokes-dirac结构,并在元素之间具有幂耦合,这为大型pH不连续的Galerkin离散化提供了数学框架。我们还为港口 - 哈米尔顿港不连续的Galerkin有限元法(pH-DGFEM)提供了先验误差分析。标量波方程显示了最佳的收敛速率,证明了港口 - 哈米尔顿港不连续的盖金有限元法。

A port-Hamiltonian (pH) system formulation is a geometrical notion used to formulate conservation laws for various physical systems. The distributed parameter port-Hamiltonian formulation models infinite dimensional Hamiltonian dynamical systems that have a non-zero energy flow through the boundaries. In this paper we propose a novel framework for discontinuous Galerkin (DG) discretizations of pH-systems. Linking DG methods with pH-systems gives rise to compatible structure preserving finite element discretizations along with flexibility in terms of geometry and function spaces of the variables involved. Moreover, the port-Hamiltonian formulation makes boundary ports explicit, which makes the choice of structure and power preserving numerical fluxes easier. We state the Discontinuous Finite Element Stokes-Dirac structure with a power preserving coupling between elements, which provides the mathematical framework for a large class of pH discontinuous Galerkin discretizations. We also provide an a priori error analysis for the port-Hamiltonian discontinuous Galerkin Finite Element Method (pH-DGFEM). The port-Hamiltonian discontinuous Galerkin finite element method is demonstrated for the scalar wave equation showing optimal rates of convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源