论文标题
Euler-Bernoulli梁方程的Gevrey规律性,具有局部结构阻尼
Gevrey regularity for the Euler-Bernoulli beam equation with localized structural damping
论文作者
论文摘要
我们研究具有局部不连续结构阻尼的Euler-Bernoulli光束方程。作为我们的主要结果,我们证明了相关的$ C_0 $ -Semigroup $(s(t))_ {t \ geq0} $是Gevrey类$δ> 24 $的$ t> 0 $,因此立即可区分。此外,我们表明$(s(t))_ {t \ geq0} $是指数稳定的。
We study a Euler-Bernoulli beam equation with localized discontinuous structural damping. As our main result, we prove that the associated $C_0$-semigroup $(S(t))_{t\geq0}$ is of Gevrey class $δ>24$ for $t>0$, hence immediately differentiable. Moreover, we show that $(S(t))_{t\geq0}$ is exponentially stable.