论文标题
NeuralDome:关于多视图人类相互作用的神经建模管道
NeuralDome: A Neural Modeling Pipeline on Multi-View Human-Object Interactions
论文作者
论文摘要
人类在日常生活任务中不断与物体互动。从固定的角度捕获此类过程,然后从固定的角度进行视觉推断,从而受到遮挡,形状和纹理歧义,动作等。为了减轻问题,必须构建一个捕获自由视点交互的训练数据集。我们构建一个密集的多视圆顶,以获取一个复杂的人类对象交互数据集,名为Hodome,该数据集由$ \ sim $ 7500万框架组成,$ 7500万帧与10个与23个对象相互作用的受试者。为了处理Hodome数据集,我们开发了NeuralDome,这是针对多视频视频输入量身定制的一层神经处理管道,以对人类受试者和对象进行准确的跟踪,几何重建和免费视图渲染。在Hodome数据集上进行的广泛实验证明了神经模型对各种推理,建模和渲染任务的有效性。数据集和神经元工具都将被传播到社区以进行进一步发展。
Humans constantly interact with objects in daily life tasks. Capturing such processes and subsequently conducting visual inferences from a fixed viewpoint suffers from occlusions, shape and texture ambiguities, motions, etc. To mitigate the problem, it is essential to build a training dataset that captures free-viewpoint interactions. We construct a dense multi-view dome to acquire a complex human object interaction dataset, named HODome, that consists of $\sim$75M frames on 10 subjects interacting with 23 objects. To process the HODome dataset, we develop NeuralDome, a layer-wise neural processing pipeline tailored for multi-view video inputs to conduct accurate tracking, geometry reconstruction and free-view rendering, for both human subjects and objects. Extensive experiments on the HODome dataset demonstrate the effectiveness of NeuralDome on a variety of inference, modeling, and rendering tasks. Both the dataset and the NeuralDome tools will be disseminated to the community for further development.