论文标题

时间显着性检测到可解释的基于变压器的时间表预测

Temporal Saliency Detection Towards Explainable Transformer-based Timeseries Forecasting

论文作者

Duong-Trung, Nghia, Nguyen, Duc-Manh, Le-Phuoc, Danh

论文摘要

尽管在众多基于变压器的模型中取得了显着进步,但长期多音时间序列的任务预测仍然是一个持续的挑战,尤其是在解释性方面。一般而言,专注于通用的显着性图来解释DNN,我们的追求是建立基于注意力的体系结构,该体系结构可以通过建立适当的注意力头的连接来自动编码与显着性相关的时间模式。因此,本文引入了时间显着性检测(TSD),这是一种有效的方法,它基于注意力机制,并将其应用于多丙烯量时间序列预测。尽管我们提出的体系结构遵守一般的编码器二次结构,但它在编码器组件中进行了重大的翻新,其中我们结合了一系列受U-Net样式体系结构启发的信息收缩和扩展块。 TSD方法通过凝结多头来促进显着性模式的多解析分析,从而逐步增强了复杂时间序列数据的预测。经验评估说明了我们所提出的方法的优越性,而不是在多个标准基准数据集中的其他模型中的优势。在多元和单变量预测的背景下,初始TSD比几个模型实现了31%和46%的相对相对改善。我们认为,本研究中提出的全面调查将为未来的研究努力提供宝贵的见解和好处。

Despite the notable advancements in numerous Transformer-based models, the task of long multi-horizon time series forecasting remains a persistent challenge, especially towards explainability. Focusing on commonly used saliency maps in explaining DNN in general, our quest is to build attention-based architecture that can automatically encode saliency-related temporal patterns by establishing connections with appropriate attention heads. Hence, this paper introduces Temporal Saliency Detection (TSD), an effective approach that builds upon the attention mechanism and applies it to multi-horizon time series prediction. While our proposed architecture adheres to the general encoder-decoder structure, it undergoes a significant renovation in the encoder component, wherein we incorporate a series of information contracting and expanding blocks inspired by the U-Net style architecture. The TSD approach facilitates the multiresolution analysis of saliency patterns by condensing multi-heads, thereby progressively enhancing the forecasting of complex time series data. Empirical evaluations illustrate the superiority of our proposed approach compared to other models across multiple standard benchmark datasets in diverse far-horizon forecasting settings. The initial TSD achieves substantial relative improvements of 31% and 46% over several models in the context of multivariate and univariate prediction. We believe the comprehensive investigations presented in this study will offer valuable insights and benefits to future research endeavors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源