论文标题
利用背景知识在交通情况下进行强大的推理
Utilizing Background Knowledge for Robust Reasoning over Traffic Situations
论文作者
论文摘要
了解交通域中的新情况需要将领域特异性和因果共识知识的复杂组合结合在一起。先前的工作为流量监测提供了足够的基于感知的方式,在本文中,我们着重于智能运输的互补研究方面:交通理解。考虑到可以使用大型语料库和知识图的语言模型来提取的丰富常识知识,我们将研究范围范围为基于文本的方法和数据集。我们基于先前的自然语言推理方法,具有知识图形自学图形的常识模型以及基于密集的猎犬模型的三种知识驱动的方法,用于零射质量质量质量质量质量质量。我们构建了两个基于文本的多项选择问题答案集:用于评估交通域中的因果推理和HDT-QA的BDD-QA,用于测量类似于人类驾驶执照测试的域知识。在这些方法中,统一-QA通过适应多种格式的问题答案,在BDD-QA数据集上达到了最佳性能。接受推理信息和常识性知识训练的语言模型也擅长预测交通域中的因果关系,但在回答人类驾驶质量检查集合方面表现不佳。对于此类集合,DPR+Unified-QA由于其有效的知识提取而表现最好。
Understanding novel situations in the traffic domain requires an intricate combination of domain-specific and causal commonsense knowledge. Prior work has provided sufficient perception-based modalities for traffic monitoring, in this paper, we focus on a complementary research aspect of Intelligent Transportation: traffic understanding. We scope our study to text-based methods and datasets given the abundant commonsense knowledge that can be extracted using language models from large corpus and knowledge graphs. We adopt three knowledge-driven approaches for zero-shot QA over traffic situations, based on prior natural language inference methods, commonsense models with knowledge graph self-supervision, and dense retriever-based models. We constructed two text-based multiple-choice question answering sets: BDD-QA for evaluating causal reasoning in the traffic domain and HDT-QA for measuring the possession of domain knowledge akin to human driving license tests. Among the methods, Unified-QA reaches the best performance on the BDD-QA dataset with the adaptation of multiple formats of question answers. Language models trained with inference information and commonsense knowledge are also good at predicting the cause and effect in the traffic domain but perform badly at answering human-driving QA sets. For such sets, DPR+Unified-QA performs the best due to its efficient knowledge extraction.