论文标题

宇宙网络和苛性骨骼:非线性约束实现 - 2D案例研究

Cosmic Web & Caustic Skeleton: non-linear Constrained Realizations -- 2D case studies

论文作者

Feldbrugge, Job, van de Weygaert, Rien

论文摘要

宇宙网络由空隙,墙壁,细丝和簇的复杂配置组成,该配置是在高斯波动的重力崩溃下形成的。了解在什么条件下,这些不同的结构从简单的初始条件以及不同的宇宙学模型如何影响它们的演变中出现,这对于研究大规模结构至关重要。在这里,我们提出了一种一般形式主义,用于建立满足专用N体型模拟非线性约束的初始随机密度和速度场。这些使我们能够将变形张量的特征值和特征向量字段上的非线性条件(如苛刻的骨骼理论指定)与当前的宇宙网络联系起来。通过扩展受约束的高斯随机场理论以及相应的Hoffman-Ribak算法,我们可以探测宇宙网络的壁,细丝和簇的祖细胞的统计特性。所提出的技术应用于宇宙N体模拟,铺平了对当今墙壁,细丝和簇的祖细胞进化以及嵌入式星系的系统研究的道路,将肉放在刺骨骨骼的骨头上。开发的非线性约束随机场理论对于通用宇宙学条件有效。为了易于可视化,此处介绍的案例研究探究了二维苛性骨骨架。

The cosmic web consists of a complex configuration of voids, walls, filaments, and clusters, which formed under the gravitational collapse of Gaussian fluctuations. Understanding under what conditions these different structures emerge from simple initial conditions, and how different cosmological models influence their evolution, is central to the study of the large-scale structure. Here, we present a general formalism for setting up initial random density and velocity fields satisfying non-linear constraints for specialized N-body simulations. These allow us to link the non-linear conditions on the eigenvalue and eigenvector fields of the deformation tensor, as specified by caustic skeleton theory, to the current-day cosmic web. By extending constrained Gaussian random field theory, and the corresponding Hoffman-Ribak algorithm, to non-linear constraints, we probe the statistical properties of the progenitors of the walls, filaments, and clusters of the cosmic web. Applied to cosmological N-body simulations, the proposed techniques pave the way towards a systematic investigation of the evolution of the progenitors of the present-day walls, filaments, and clusters, and the embedded galaxies, putting flesh on the bones of the caustic skeleton. The developed nonlinear constrained random field theory is valid for generic cosmological conditions. For ease of visualization, the case study presented here probes the two-dimensional caustic skeleton.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源