论文标题
Octonionic Calabi-yau定理
Octonionic Calabi-Yau theorem
论文作者
论文摘要
引入并研究了一类称为OctonionicKähler的新的Riemannian指标,并在某些类别的16维流形上进行了研究。它是Kähler指标的八元离子类似物,这些指标在复杂的歧管和超复合歧管的HKT分类方面。然后,对于这类指标,在适当的假设下引入并解决了Monge-Ampère方程的八元代码版本。后一个结果是Kähler几何形状的Calabi-yau定理的八世纪版本。
A new class of Riemannian metrics, called octonionic Kähler, is introduced and studied on a certain class of 16-dimensional manifolds. It is an octonionic analogue of Kähler metrics on complex manifolds and of HKT-metrics of hypercomplex manifolds. Then for this class of metrics an octonionic version of the Monge-Ampère equation is introduced and solved under appropriate assumptions. The latter result is an octonionic version of the Calabi-Yau theorem from Kähler geometry.