论文标题

Octonionic Calabi-yau定理

Octonionic Calabi-Yau theorem

论文作者

Alesker, Semyon, Gordon, Peter

论文摘要

引入并研究了一类称为OctonionicKähler的新的Riemannian指标,并在某些类别的16维流形上进行了研究。它是Kähler指标的八元离子类似物,这些指标在复杂的歧管和超复合歧管的HKT分类方面。然后,对于这类指标,在适当的假设下引入并解决了Monge-Ampère方程的八元代码版本。后一个结果是Kähler几何形状的Calabi-yau定理的八世纪版本。

A new class of Riemannian metrics, called octonionic Kähler, is introduced and studied on a certain class of 16-dimensional manifolds. It is an octonionic analogue of Kähler metrics on complex manifolds and of HKT-metrics of hypercomplex manifolds. Then for this class of metrics an octonionic version of the Monge-Ampère equation is introduced and solved under appropriate assumptions. The latter result is an octonionic version of the Calabi-Yau theorem from Kähler geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源