论文标题

分析波功能

The Analytic Wavefunction

论文作者

Salcedo, Santiago Agui, Lee, Mang Hei Gordon, Melville, Scott, Pajer, Enrico

论文摘要

量子场理论中的波函数是解决各种问题的宝贵工具,包括探测Minkowski时空的内部和DE Sitter SpaceTime中的模拟边界可观察物。在这里,我们研究了Minkowski中波函数系数的分析结构,这是其运动学的函数。我们以截肢的时间顺序相关函数来引入脱壳波函数,并表明它在复杂的能量平面中进行了分析,除了负实际轴上可能的奇异性。这些奇异性是通过简单的能量保存条件确定为所有循环订单的。我们通过开发对波函数循环积分的Landau分析来确认这张图片,并通过标量场理论中的几个显式计算证实了我们的发现。这种分析结构使我们能够根据相应的UV-Completion中不连续性的积分来固定其低能扩展中的系数的波函数新的UV/IR总和规则。与散射幅度的类似总和规则相反,波函数总和规则还可以限制总衍生相互作用。我们以简单的紫外线模型和重型标量的简单紫外线模型明确地以一环的顺序验证了这些新关系。我们的结果适用于Lorentz不变和增强理论,为在平坦和宇宙学的空位中得出波功能阳性范围铺平了道路。

The wavefunction in quantum field theory is an invaluable tool for tackling a variety of problems, including probing the interior of Minkowski spacetime and modelling boundary observables in de Sitter spacetime. Here we study the analytic structure of wavefunction coefficients in Minkowski as a function of their kinematics. We introduce an off-shell wavefunction in terms of amputated time-ordered correlation functions and show that it is analytic in the complex energy plane except for possible singularities on the negative real axis. These singularities are determined to all loop orders by a simple energy-conservation condition. We confirm this picture by developing a Landau analysis of wavefunction loop integrals and corroborate our findings with several explicit calculations in scalar field theories. This analytic structure allows us to derive new UV/IR sum rules for the wavefunction that fix the coefficients in its low-energy expansion in terms of integrals of discontinuities in the corresponding UV-completion. In contrast to the analogous sum rules for scattering amplitudes, the wavefunction sum rules can also constrain total-derivative interactions. We explicitly verify these new relations at one-loop order in simple UV models of a light and a heavy scalar. Our results, which apply to both Lorentz invariant and boost-breaking theories, pave the way towards deriving wavefunction positivity bounds in flat and cosmological spacetimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源