论文标题
SplitGP:在联邦学习中同时实现概括和个性化
SplitGP: Achieving Both Generalization and Personalization in Federated Learning
论文作者
论文摘要
提供Edge-AI服务的基本挑战是需要实现个性化(即对单个客户)和概括(即未见数据)属性的机器学习(ML)模型。联邦学习(FL)中的现有技术在这些目标之间遇到了巨大的权衡,并在训练和推理期间对边缘设备施加了巨大的计算要求。在本文中,我们提出了SplitGP,这是一种新的拆分学习解决方案,可以同时捕获概括和个性化功能,从而在资源受限的客户端(例如移动/IoT设备)中有效推理。我们的关键想法是将完整的ML模型分为客户端和服务器端组件,并对它们强加不同的角色:对客户端模型进行了培训,以对每个客户端的主要任务进行了强大的个性化能力,而服务器端模型则经过培训,以具有强大的概括性概括能力来处理所有客户的分配任务。我们通过分析表征了splitGP的收敛行为,表明所有客户端模型都渐近地接近静止点。此外,我们分析了splitGP中的推论时间,并提供了确定模型分率比率的界限。实验结果表明,SplitGP在推理时间的宽距上优于现有基线,并测试不同量分布样品的准确性。
A fundamental challenge to providing edge-AI services is the need for a machine learning (ML) model that achieves personalization (i.e., to individual clients) and generalization (i.e., to unseen data) properties concurrently. Existing techniques in federated learning (FL) have encountered a steep tradeoff between these objectives and impose large computational requirements on edge devices during training and inference. In this paper, we propose SplitGP, a new split learning solution that can simultaneously capture generalization and personalization capabilities for efficient inference across resource-constrained clients (e.g., mobile/IoT devices). Our key idea is to split the full ML model into client-side and server-side components, and impose different roles to them: the client-side model is trained to have strong personalization capability optimized to each client's main task, while the server-side model is trained to have strong generalization capability for handling all clients' out-of-distribution tasks. We analytically characterize the convergence behavior of SplitGP, revealing that all client models approach stationary points asymptotically. Further, we analyze the inference time in SplitGP and provide bounds for determining model split ratios. Experimental results show that SplitGP outperforms existing baselines by wide margins in inference time and test accuracy for varying amounts of out-of-distribution samples.