论文标题
伪造直到您做到这一点:从合成成像网克隆中学习可转移的表示形式
Fake it till you make it: Learning transferable representations from synthetic ImageNet clones
论文作者
论文摘要
最近的图像生成模型(例如稳定扩散)表现出了令人印象深刻的能力,可以从简单的文本提示开始生成相当逼真的图像。这样的模型可以使真实的图像过时用于训练图像预测模型吗?在本文中,我们通过调查训练成像网分类模型时对真实图像的需求来回答这个挑衅性问题的一部分。仅以用于构建数据集的类名称提供,我们探讨了稳定扩散生成ImageNet的合成克隆的能力,并衡量从头开始训练分类模型的有用程度。我们表明,使用最少和类不足的及时及时工程,Imagenet克隆能够弥合合成图像和经过真实图像训练的模型产生的模型之间的很大一部分差距,这是我们在这项研究中考虑的几种标准分类基准。更重要的是,我们表明,在合成图像上训练的模型表现出强大的概括属性,并以对真实数据进行转移的模型进行表现。项目页面:https://europe.naverlabs.com/imagenet-sd/
Recent image generation models such as Stable Diffusion have exhibited an impressive ability to generate fairly realistic images starting from a simple text prompt. Could such models render real images obsolete for training image prediction models? In this paper, we answer part of this provocative question by investigating the need for real images when training models for ImageNet classification. Provided only with the class names that have been used to build the dataset, we explore the ability of Stable Diffusion to generate synthetic clones of ImageNet and measure how useful these are for training classification models from scratch. We show that with minimal and class-agnostic prompt engineering, ImageNet clones are able to close a large part of the gap between models produced by synthetic images and models trained with real images, for the several standard classification benchmarks that we consider in this study. More importantly, we show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data for transfer. Project page: https://europe.naverlabs.com/imagenet-sd/