论文标题
使用模拟辅助因果建模评估疫苗分配策略
Evaluating vaccine allocation strategies using simulation-assisted causal modelling
论文作者
论文摘要
在大流行期间,疫苗的供应量有限,需要不同人口组的优先级。因此,评估疫苗分配是大流行反应的关键要素。在目前的工作中,我们开发了一个模型,以回顾性评估针对COVID-19大流行的年龄依赖性反事实疫苗分配策略。为了估计分配对预期的严重案例发生率的影响,我们采用了模拟辅助因果建模方法,结合了隔室感染 - 动力学模拟,一种粗糙的,数据驱动的因果模型和免疫力降低的文献估计。我们将2021年以色列实施的疫苗分配策略与反事实策略进行了比较,例如没有优先级排序,年轻年龄段的优先级或严格的风险排名方法;我们发现以色列的实施战略确实非常有效。我们还研究了给定年龄段增加疫苗摄取量增加的边际影响,发现老年人的疫苗接种量增加最有效地预防严重病例,而中等年龄组的额外疫苗接种最有效地减少了感染。由于其模块化结构,我们的模型可以很容易地适应未来的大流行。我们通过研究具有西班牙流感特征的大流行的疫苗分配策略来证明这种灵活性。因此,我们的方法有助于评估核心流行因素复杂相互作用的疫苗接种策略,包括依赖年龄的风险特征,免疫力降低,疫苗的可用性和扩散率。
Early on during a pandemic, vaccine availability is limited, requiring prioritisation of different population groups. Evaluating vaccine allocation is therefore a crucial element of pandemics response. In the present work, we develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the COVID-19 pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modelling approach which combines a compartmental infection-dynamics simulation, a coarse-grained, data-driven causal model and literature estimates for immunity waning. We compare Israel's implemented vaccine allocation strategy in 2021 to counterfactual strategies such as no prioritisation, prioritisation of younger age groups or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the marginal impact of increasing vaccine uptake for a given age group and find that increasing vaccinations in the elderly is most effective at preventing severe cases, whereas additional vaccinations for middle-aged groups reduce infections most effectively. Due to its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this flexibility by investigating vaccine allocation strategies for a pandemic with characteristics of the Spanish Flu. Our approach thus helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability and spreading rates.