论文标题
变形的软代数用于量规理论
Deforming Soft Algebras for Gauge Theory
论文作者
论文摘要
从软定理塔中衍生的对称代数可以通过对有效动作的高维威尔逊主义校正的简短列表来变形。我们研究了量规理论中最简单的这些变形,该变形是由无质量的复合体标量引起的,耦合到$ f^2 $。柔软的对称性“ $ s $ algebra”紧凑地将作用在天体球上的高旋转电流代数变形并扩大到包含软标量发电机的关联代数。即使在亚伯仪理论中,这种变形的软代数也被认为是非阿布莱的。 $ s $ subalgebra中央扩展的两参数是通过转移和解耦标量发电机而产生的。结果表明,这些中心扩展也可以通过在标量场的某个非平凡但洛伦兹不变的冲击波类型背景周围扩展来生成。
Symmetry algebras deriving from towers of soft theorems can be deformed by a short list of higher-dimension Wilsonian corrections to the effective action. We study the simplest of these deformations in gauge theory arising from a massless complex scalar coupled to $F^2$. The soft gauge symmetry '$s$-algebra', compactly realized as a higher-spin current algebra acting on the celestial sphere, is deformed and enlarged to an associative algebra containing soft scalar generators. This deformed soft algebra is found to be non-abelian even in abelian gauge theory. A two-parameter family of central extensions of the $s$-subalgebra are generated by shifting and decoupling the scalar generators. It is shown that these central extensions can also be generated by expanding around a certain non-trivial but Lorentz invariant shockwave type background for the scalar field.