论文标题
部分可观测时空混沌系统的无模型预测
Structural Complexities of Matching Mechanisms
论文作者
论文摘要
我们研究了针对两侧匹配机制的各种新型复杂度度量,应用于两种规范的策略抗匹配机制,即递延接受度(DA)和顶级交易周期(TTC)。我们的指标旨在捕获各种结构(而不是计算)问题的复杂性,尤其是经济学中最新感兴趣的问题。我们考虑一种统一,灵活的方法来形式化我们的问题:定义执行某些任务的协议或数据结构,并约束所需的位数。我们的主要结果将这种方法应用于四个普遍关注的问题;对于将申请人与机构匹配的机制,我们的问题是: (1)一个申请人如何影响结果匹配? (2)一个申请人如何影响另一个申请人的选项集? (3)如何代表 /传达结果匹配? (4)如何验证结果匹配? 从整体上讲,我们的结果表明,TTC比DA更复杂,使以前的直觉形式化了DA的结构比TTC更简单。对于问题(2),我们的结果给出了新的组合表征,当在DA中添加新申请人时,从每个申请人的选项中删除了机构的一组机构;这种特征可能具有独立的利益。对于问题(3),我们的结果给出了新的紧密下限,证明匹配与优先级之间的关系在TTC中比在DA中更为复杂。尽管如此,我们仍表明,TTC的这种较高的复杂性是细微的:通过构建新的紧密下限实例和新的验证协议,我们证明DA和TTC在问题(1)和(4)下的复杂性相当。这更精确地描述了TTC比DA更复杂的方式,并强调各种考虑必须考虑到匹配机制的复杂性。
We study various novel complexity measures for two-sided matching mechanisms, applied to the two canonical strategyproof matching mechanisms, Deferred Acceptance (DA) and Top Trading Cycles (TTC). Our metrics are designed to capture the complexity of various structural (rather than computational) concerns, in particular ones of recent interest within economics. We consider a unified, flexible approach to formalizing our questions: Define a protocol or data structure performing some task, and bound the number of bits that it requires. Our main results apply this approach to four questions of general interest; for mechanisms matching applicants to institutions, our questions are: (1) How can one applicant affect the outcome matching? (2) How can one applicant affect another applicant's set of options? (3) How can the outcome matching be represented / communicated? (4) How can the outcome matching be verified? Holistically, our results show that TTC is more complex than DA, formalizing previous intuitions that DA has a simpler structure than TTC. For question (2), our result gives a new combinatorial characterization of which institutions are removed from each applicant's set of options when a new applicant is added in DA; this characterization may be of independent interest. For question (3), our result gives new tight lower bounds proving that the relationship between the matching and the priorities is more complex in TTC than in DA. We nonetheless showcase that this higher complexity of TTC is nuanced: By constructing new tight lower-bound instances and new verification protocols, we prove that DA and TTC are comparable in complexity under questions (1) and (4). This more precisely delineates the ways in which TTC is more complex than DA, and emphasizes that diverse considerations must factor into gauging the complexity of matching mechanisms.