论文标题
班次地图不具有类型的保护
Shifts maps are not type-preserving
论文作者
论文摘要
对于足够复杂性的表面$ S $,Dehn Twists在$ s $的弧,曲线和相对弧形图上椭圆形。我们表明,用偏移图组成Dehn Twist会导致对任何表面$ S $的相对弧形$ \ MATHCAL {a}(s,p)$的Loxodromic等轴测图,并带有隔离的穿刺$ P $承认移位地图。因此,换档图不是具有类型的保存。
For a surface $S$ of sufficient complexity, Dehn twists act elliptically on the arc, curve, and relative arc graph of $S$. We show that composing a Dehn twist with a shift map results in a loxodromic isometry of the relative arc graph $\mathcal{A}(S,p)$ for any surface $S$ with an isolated puncture $p$ admitting a shift map. Therefore, shift maps are not type-preserving.