论文标题

桥接差距:开放回程对话机理解理解的fused-t5

Bridging The Gap: Entailment Fused-T5 for Open-retrieval Conversational Machine Reading Comprehension

论文作者

Zhang, Xiao, Huang, Heyan, Chi, Zewen, Mao, Xian-Ling

论文摘要

开放式回归对话机阅读理解(OCMRC)模拟了现实生活中的对话互动场景。当根据检索到的规则文本,用户场景,用户问题和对话历史记录“查询”时,需要机器做出“是/否/查询”的决定或生成后续问题。最近的研究探索了减少决策和问题发电之间信息差距的方法,从而提高了发电的性能。但是,信息差距仍然存在,因为这些管道结构在决策,提取和提出三个阶段的问题方面仍然有限。决策和产生是分别推理的,在决策中使用的需要推理在所有阶段都很难分享。为了解决上述问题,我们提出了一个新颖的一阶段端到端框架,称为Indailment Fused-T5(EFT),以全球理解方式弥合决策与发电之间的信息差距。广泛的实验结果表明,我们提出的框架在OR-SHARC基准测试中实现了新的最新性能。

Open-retrieval conversational machine reading comprehension (OCMRC) simulates real-life conversational interaction scenes. Machines are required to make a decision of "Yes/No/Inquire" or generate a follow-up question when the decision is "Inquire" based on retrieved rule texts, user scenario, user question, and dialogue history. Recent studies explored the methods to reduce the information gap between decision-making and question generation and thus improve the performance of generation. However, the information gap still exists because these pipeline structures are still limited in decision-making, span extraction, and question rephrasing three stages. Decision-making and generation are reasoning separately, and the entailment reasoning utilized in decision-making is hard to share through all stages. To tackle the above problem, we proposed a novel one-stage end-to-end framework, called Entailment Fused-T5 (EFT), to bridge the information gap between decision-making and generation in a global understanding manner. The extensive experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on the OR-ShARC benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源