论文标题
在细胞内环境中揭开驱动蛋白加速度:活跃浴的理论
Unraveling on Kinesin Acceleration in Intracellular Environments: A Theory for Active Bath
论文作者
论文摘要
单分子运动动力蛋白利用热和非热波动沿微管运输各种货物,将化学能转化为有向运动。为了描述活细胞中复杂环境产生的非热波动,我们通过引入由活跃的Ornstein-uhlenbeck(OU)颗粒组成的活性浴场来建立一个自下而上的模型来模仿细胞内环境。模型系统的模拟表明,这种活跃的浴缸会加速动力素及其附着的探针。此外,我们通过使用平均场方法得出探针的广义langevin方程(GLE)来提供对模拟结果的理论见解,其中有效的摩擦核和波动的噪声项被明确获得。 GLE的数值解决方案与模拟结果非常吻合。我们采样了这样的噪声,计算它们的方差和非高斯参数,并揭示了对探针加速的主要贡献归因于噪声方差。
Single molecular motor kinesin harnesses thermal and non-thermal fluctuations to transport various cargoes along microtubules, converting chemical energy to directed movements. To describe the non-thermal fluctuations generated by the complex environment in living cells, we establish a bottom-up model to mimic the intracellular environment, by introducing an active bath consisting of active Ornstein-Uhlenbeck (OU) particles. Simulations of the model system show that kinesin and the probe attached to it are accelerated by such active bath. Further, we provide a theoretical insight into the simulation result by deriving a generalized Langevin equation (GLE) for the probe with a mean-field method, wherein an effective friction kernel and fluctuating noise terms are obtained explicitly. Numerical solutions of the GLE show very good agreement with simulation results. We sample such noises, calculate their variances and non-Gaussian parameters, and reveal that the dominant contribution to probe acceleration is attributed to noise variance.