论文标题
绩效评估和500多种自然启发的元神经算法的详尽清单
Performance assessment and exhaustive listing of 500+ nature inspired metaheuristic algorithms
论文作者
论文摘要
元硫疗法通常在各个领域使用,它们在科学和工业社区中引起了很多关注。近年来,新的元启发式名称的数量一直在不断增长。通常,发明者将这些新算法的新颖性归因于生物学,人类行为,物理学或其他现象的灵感。此外,这些新算法使用经典的基准问题而没有移动/旋转的基本版本与其他元启发式学的基本版本进行了比较,显示出竞争性的性能。在这项研究中,我们详尽地制定了500多个元启发术。为了评估最近的竞争变体的性能和新提出的元启发式学,在CEC2017基准套件上进行了全面的比较,将11种新提出的元启发式和已建立的元硫疗法的4种变体进行比较。此外,研究了这些算法是否具有搜索空间中心的搜索偏差。结果表明,新提出的EBCM的性能(具有协方差矩阵适应的有效蝴蝶优化器)算法的性能与已建立的元启发式学的4种表现良好的变体相当,并且在许多方面都具有相似的属性和行为,例如融合,多样性,探索和利用权衡。由于某些转换,所有15种算法的性能可能会恶化,而四种最先进的元启发式术受到转换的影响较小,例如将全球最佳点从搜索空间的中心转移而变化。应当指出的是,除EBCM外,其他10种新算法主要在2019 - 2020年期间提出的算法不如在CEC 2017功能上的融合速度和全球搜索能力方面的差异进化和进化策略的2017年表现良好。
Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems without shift/rotation, show competitive performances. In this study, we exhaustively tabulate more than 500 metaheuristics. To comparatively evaluate the performance of the recent competitive variants and newly proposed metaheuristics, 11 newly proposed metaheuristics and 4 variants of established metaheuristics are comprehensively compared on the CEC2017 benchmark suite. In addition, whether these algorithms have a search bias to the center of the search space is investigated. The results show that the performance of the newly proposed EBCM (effective butterfly optimizer with covariance matrix adaptation) algorithm performs comparably to the 4 well performing variants of the established metaheuristics and possesses similar properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms proposed mostly during 2019-2020 are inferior to the well performing 2017 variants of differential evolution and evolution strategy in terms of convergence speed and global search ability on CEC 2017 functions.