论文标题
Wilson或Ginsparg-Wilson Quarks在晶格QCD中光谱量的渐近晶格间距依赖性
Asymptotic lattice spacing dependence of spectral quantities in lattice QCD with Wilson or Ginsparg-Wilson quarks
论文作者
论文摘要
晶格QCD结果的一个主要系统不确定性是由于连续外推。对于像QCD这样的渐近自由理论,可以找到$ a^{n_ \ mathrm {minrm {min}}的更正[2b_0 \ bar {g}^2(1/a)] $μ= 1/a $和$ n_ \ mathrm {min} $是一个正整数。 $ \hatγ_i$可以占据任何正值或负值,但可以通过临近领先的顺序扰动理论来计算。它将影响趋同于连续限制。 Balog,Niedermayer和Weisz首先指出了O(3)模型的开创性工作中这种纠正的问题。基于Symanzik的有效理论,用于与Ginsparg-Wilson和Wilson Quarks的晶格QCD的有效理论,由于离散的晶格动作的晶格伪像,发现了各种权力$ \hatγ_i$。这些功能在描述光谱量时就足够了,而非光谱数量将需要源自校正到每个离散的本地领域的其他功能。该新输入应纳入用于连续外推的Ansätze。
One major systematic uncertainty of lattice QCD results is due to the continuum extrapolation. For an asymptotically free theory like QCD one finds corrections of the form $a^{n_\mathrm{min}}[2b_0\bar{g}^2(1/a)]^{\hatΓ_i}$ with lattice spacing $a$, where $\bar{g}(1/a)$ is the running coupling at renormalisation scale $μ=1/a$ and $n_\mathrm{min}$ is a positive integer. $\hatΓ_i$ can take any positive or negative value, but is computable by next-to-leading order perturbation theory. It will impact convergence towards the continuum limit. Balog, Niedermayer and Weisz first pointed out how problematic such corrections can be in their seminal work for the O(3) model. Based on Symanzik Effective Theory for lattice QCD with Ginsparg-Wilson and Wilson quarks, various powers $\hatΓ_i$ are found due to lattice artifacts from the discretised lattice action. Those powers are sufficient when describing spectral quantities, while non-spectral quantities will require additional powers originating from corrections to each of the discretised local fields involved. This new input should be incorporated into ansätze used for the continuum extrapolation.