论文标题

从自然语言反馈中提高摘要的事实一致性方面

On Improving Summarization Factual Consistency from Natural Language Feedback

论文作者

Liu, Yixin, Deb, Budhaditya, Teruel, Milagro, Halfaker, Aaron, Radev, Dragomir, Awadallah, Ahmed H.

论文摘要

尽管语言生成模型最近取得了进展,但它们的输出可能并不总是满足用户期望。在这项工作中,我们研究是否可以利用自然语言的信息反馈来提高发电质量和用户偏好一致性。为此,我们将事实一致性考虑到摘要中,摘要应仅包含输入文档支持的信息,作为用户指定的偏好。我们收集了一个高质量的数据集,DeFacto,其中包含人类的演示和信息性自然语言反馈,其中包括纠正说明,编辑的摘要以及有关摘要的事实一致性的解释。使用我们的数据集,我们研究了三个自然语言生成任务:(1)通过遵循人类反馈来编辑摘要,(2)生成人类的反馈以编辑原始摘要,(3)修改初始摘要以通过产生人类反馈和编辑摘要来纠正事实错误。我们表明,由于其信息自然语言反馈,DeFacto可以提供事实一致的人文编辑的摘要,并进一步了解事实一致性。我们进一步证明,微调的语言模型可以利用我们的数据集来提高摘要的事实一致性,而大型语言模型在我们提出的需要可控文本生成的任务中缺乏零拍的学习能力。

Despite the recent progress in language generation models, their outputs may not always meet user expectations. In this work, we study whether informational feedback in natural language can be leveraged to improve generation quality and user preference alignment. To this end, we consider factual consistency in summarization, the quality that the summary should only contain information supported by the input documents, as the user-expected preference. We collect a high-quality dataset, DeFacto, containing human demonstrations and informational natural language feedback consisting of corrective instructions, edited summaries, and explanations with respect to the factual consistency of the summary. Using our dataset, we study three natural language generation tasks: (1) editing a summary by following the human feedback, (2) generating human feedback for editing the original summary, and (3) revising the initial summary to correct factual errors by generating both the human feedback and edited summary. We show that DeFacto can provide factually consistent human-edited summaries and further insights into summarization factual consistency thanks to its informational natural language feedback. We further demonstrate that fine-tuned language models can leverage our dataset to improve the summary factual consistency, while large language models lack the zero-shot learning ability in our proposed tasks that require controllable text generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源