论文标题

Oseledets标志和Pesin套装的半持续点,带有指数的小尾巴

Semi-continuity of Oseledets flags and Pesin sets with exponentially small tails

论文作者

Stoyanov, Luchezar

论文摘要

让$ f $是双边符号$ x $的有限型类型的可逆性转移,让$μ$是$ f $的gibbs量度,由$ f $确定的$ x $上的潜力确定,让$ a $ a $ a $ a $ a $ a $ a $ cocycle coccycle cocycle cocycle cocycle by $ f $ ly $ t $ ty $ - r^d $ - r^d $ e^d $ - $λ_k<λ_{k-1} <\ ldots <λ_1$,使得$ a^{ - 1} $也是连续的。 We prove that if the Oseledets flags $F_j(x) = E_j(x) \oplus E_{j-1}(x) \oplus \cdots \oplus E_1(x)$ depend upper semi-continuously on $x \in X$, then there exists a Pesin set with exponentially small tails for $μ$.

Let $f$ be an invertible transitive subshift of finite type over a bilateral symbol space $X$, let $μ$ be a Gibbs measure for $f$ determined by a Hölder continuous potential on $X$, and let $A$ be an invertible continuous linear cocycle over $f$ acting on a continuous $\R^d$-bundle $E$ over $X$ with Lyapunov exponents $λ_k < λ_{k-1} < \ldots < λ_1$ such that $A^{-1}$ is continuous as well. We prove that if the Oseledets flags $F_j(x) = E_j(x) \oplus E_{j-1}(x) \oplus \cdots \oplus E_1(x)$ depend upper semi-continuously on $x \in X$, then there exists a Pesin set with exponentially small tails for $μ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源