论文标题

基于GEDI,Sentinel-1和Sentinel-2数据的Landes Forest(法国)中的高分辨率冠层高度图采用深度学习方法

High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach

论文作者

Schwartz, Martin, Ciais, Philippe, Ottlé, Catherine, De Truchis, Aurelien, Vega, Cedric, Fayad, Ibrahim, Brandt, Martin, Fensholt, Rasmus, Baghdadi, Nicolas, Morneau, François, Morin, David, Guyon, Dominique, Dayau, Sylvia, Wigneron, Jean-Pierre

论文摘要

在欧洲的强化管理的森林中,森林被分为小规模的林分,可能显示出林分的异质性,可以说需要高空间分辨率(10-20米)来捕获冠层高度的差异。在这项工作中,我们开发了一种基于多流遥感测量值的深度学习模型,以在法国的“ Landes de Gascogne”森林上创建高分辨率的冠层高度图,这是一个大型海上松树种植园,其13,000 km $^2 $,具有平坦的地形和强化管理。该区域的特征是每35至50年收获一次,典型的长度为几百米。我们的深度学习U-NET模型使用来自Sentinel-1和Sentinel-2的多频段图像,其复合时间平均值作为预测从GEDI波形得出的树高的输入。通过来自森林库存图的外部验证数据和基于在特定位置可用的摩擦图图像的立体3D重建模型进行评估。我们基于Sentinel-1和Sentinel-2频段的组合训练了七个不同的U-NET模型,以评估每种仪器在主要高度检索中的重要性。该模型输出使我们能够生成2020年整个“ Landes de Gascogne”森林面积的10 m分辨率冠层高度图,在测试数据集上的平均绝对误差为2.02 m。使用Sentinel-1和Sentinel-2的所有可用卫星层获得了最佳预测,但仅使用一个卫星源也提供了良好的预测。对于针叶林中的所有验证数据集,我们的模型显示出比同一地区可用的Canopy高度模型更好的指标。

In intensively managed forests in Europe, where forests are divided into stands of small size and may show heterogeneity within stands, a high spatial resolution (10 - 20 meters) is arguably needed to capture the differences in canopy height. In this work, we developed a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map over the "Landes de Gascogne" forest in France, a large maritime pine plantation of 13,000 km$^2$ with flat terrain and intensive management. This area is characterized by even-aged and mono-specific stands, of a typical length of a few hundred meters, harvested every 35 to 50 years. Our deep learning U-Net model uses multi-band images from Sentinel-1 and Sentinel-2 with composite time averages as input to predict tree height derived from GEDI waveforms. The evaluation is performed with external validation data from forest inventory plots and a stereo 3D reconstruction model based on Skysat imagery available at specific locations. We trained seven different U-net models based on a combination of Sentinel-1 and Sentinel-2 bands to evaluate the importance of each instrument in the dominant height retrieval. The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020 with a mean absolute error of 2.02 m on the Test dataset. The best predictions were obtained using all available satellite layers from Sentinel-1 and Sentinel-2 but using only one satellite source also provided good predictions. For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源