论文标题
机器学习和聚合物自洽场理论在两个空间维度
Machine Learning and Polymer Self-Consistent Field Theory in Two Spatial Dimensions
论文作者
论文摘要
提出了一种计算框架,该计算框架利用自洽场理论模拟数据,并深入学习加速了块共聚物参数空间的探索。这是[1]中引入的框架的实质性二维扩展。提出了一些创新和改进。 (1)采用SOBOLEV太空训练,卷积神经网络(CNN)来处理离散的,局部平均单体密度场的指数尺寸增加,并强烈实现预测的,现场理论的强化吉尔顿顿的空间翻译和旋转不变性。 (2)引入了生成对抗网络(GAN),以有效,准确地预测鞍点,局部平均单体密度电场,而无需求助于采用训练集的梯度下降方法。这种GAN方法可节省内存和计算成本。 (3)所提出的机器学习框架成功地应用于2D单元格大小优化,以清楚地说明其广泛的潜力,以加快发现聚合物纳米结构的参数空间的探索。三维相发现的扩展似乎是可行的。
A computational framework that leverages data from self-consistent field theory simulations with deep learning to accelerate the exploration of parameter space for block copolymers is presented. This is a substantial two-dimensional extension of the framework introduced in [1]. Several innovations and improvements are proposed. (1) A Sobolev space-trained, convolutional neural network (CNN) is employed to handle the exponential dimension increase of the discretized, local average monomer density fields and to strongly enforce both spatial translation and rotation invariance of the predicted, field-theoretic intensive Hamiltonian. (2) A generative adversarial network (GAN) is introduced to efficiently and accurately predict saddle point, local average monomer density fields without resorting to gradient descent methods that employ the training set. This GAN approach yields important savings of both memory and computational cost. (3) The proposed machine learning framework is successfully applied to 2D cell size optimization as a clear illustration of its broad potential to accelerate the exploration of parameter space for discovering polymer nanostructures. Extensions to three-dimensional phase discovery appear to be feasible.