论文标题

TMS-NET:分割网络,加上用于鲁棒心脏图像分割的运行时质量控制方法

TMS-Net: A Segmentation Network Coupled With A Run-time Quality Control Method For Robust Cardiac Image Segmentation

论文作者

Uslu, Fatmatulzehra, Bharath, Anil A.

论文摘要

最近,深层网络对心脏磁共振成像(MRI)图像的分割表现出了令人印象深刻的性能。但是,由于稳健性问题导致临床医生对其结果的信任较低,因此事实证明,他们的成就在过渡到广泛使用的情况下很慢。预测分割口罩的运行时间质量可能有助于警告临床医生不要效果不佳。尽管它很重要,但对这个问题的研究很少。为了解决这一差距,我们提出了一种质量控制方法,基于跨余弦相似性衡量的多视图网络TMS-NET的解码器的一致性。该网络采用从不同轴从相同的3D图像重新定义的三个视图输入。与以前的多视图网络不同,TMS-NET具有单个编码器和三个解码器,从而在我们的实验中,导致了更好的噪声稳健性,分割性能和运行时质量估计,该实验涉及Stacom 2013和Stacom 2018挑战数据集的左心房分割。我们还提出了一种通过使用工程噪声和里克利亚噪声产生的嘈杂图像来模拟训练不足,高各向异性和不良成像设置问题的方法来产生不良的分割面膜。我们的运行时质量估计方法表明,在Stacom 2018上的AUC良好分类,AUC达到0.97。我们相信TMS-NET和我们的运行时质量估计方法具有很高的潜力,可以增加临床医生对自动图像分析工具的推力。

Recently, deep networks have shown impressive performance for the segmentation of cardiac Magnetic Resonance Imaging (MRI) images. However, their achievement is proving slow to transition to widespread use in medical clinics because of robustness issues leading to low trust of clinicians to their results. Predicting run-time quality of segmentation masks can be useful to warn clinicians against poor results. Despite its importance, there are few studies on this problem. To address this gap, we propose a quality control method based on the agreement across decoders of a multi-view network, TMS-Net, measured by the cosine similarity. The network takes three view inputs resliced from the same 3D image along different axes. Different from previous multi-view networks, TMS-Net has a single encoder and three decoders, leading to better noise robustness, segmentation performance and run-time quality estimation in our experiments on the segmentation of the left atrium on STACOM 2013 and STACOM 2018 challenge datasets. We also present a way to generate poor segmentation masks by using noisy images generated with engineered noise and Rician noise to simulate undertraining, high anisotropy and poor imaging settings problems. Our run-time quality estimation method show a good classification of poor and good quality segmentation masks with an AUC reaching to 0.97 on STACOM 2018. We believe that TMS-Net and our run-time quality estimation method has a high potential to increase the thrust of clinicians to automatic image analysis tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源