论文标题

不安地赢得国际象棋球员职位

Intransitively winning chess players positions

论文作者

Poddiakov, Alexander

论文摘要

考虑了国际象棋参与者在不及物(岩纸剪裁)关系中的职位。也就是说,白色的位置a是可取的(如果可以选择的话,应该选择它)到黑色的位置B,黑色的位置B比白色的位置C更可取,白色的位置C比黑色的位置d比黑色的位置d优于黑色位置D,但是黑色的位置D比白色的位置A更可取。国际象棋参与者位置的胜利的不同意性被认为是国际象棋环境复杂性的结果 - 与仅具有传递位置的简单游戏形成鲜明对比。国际象棋参与者位置的胜利之间的关系空间是非欧国人。 Zermelo-von Neumann定理得到了关于可能性与不可能建立纯粹获胜策略的陈述,以基于国际象棋参与者职位的传递性的假设来建立纯粹的获胜策略。关于其他位置游戏中玩家不及物职位的可能性的问题。

Positions of chess players in intransitive (rock-paper-scissors) relations are considered. Namely, position A of White is preferable (it should be chosen if choice is possible) to position B of Black, position B of Black is preferable to position C of White, position C of White is preferable to position D of Black, but position D of Black is preferable to position A of White. Intransitivity of winningness of positions of chess players is considered to be a consequence of complexity of the chess environment -- in contrast with simpler games with transitive positions only. The space of relations between winningness of positions of chess players is non-Euclidean. The Zermelo-von Neumann theorem is complemented by statements about possibility vs. impossibility of building pure winning strategies based on the assumption of transitivity of positions of chess players. Questions about the possibility of intransitive positions of players in other positional games are raised.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源