论文标题
超质黑物质的超大质黑洞种子
Supermassive black hole seeds from sub-keV dark matter
论文作者
论文摘要
在Redshifts $ Z \ SIM 6-7.5 $上观察到的类星体由超级质量的黑洞提供动力,这些黑洞太大,无法从早期的恒星残留物中生长而没有有效的超级埃德丁顿积聚。减轻这种张力的建议是,无粉尘和无金属气云直接崩溃的过程,产生质量$ m_ \ textrm {seed} \ sim10^5 m_ \ odot $ y redshift $ z \ z \ sim 17 $的黑洞种子。为了直接崩溃,必须存在大量紫外光子的通量来进行光解离分子氢,从而使气体缓慢冷却并避免碎裂。我们调查了亚基质量暗物质腐烂或消灭导致直接崩溃所需的紫外线通量的可能性。我们发现,用质量在$ 13.6 \ textrm {ev} \ le m_ {dm} \ le 20 \ textrm {evtrm {ev} $的范围内消灭深色物质,可以产生所需的通量,同时避免现有约束。一个非热产生的暗物质粒子,包括整个暗物质丰度,需要$ \langleσv\ rangle \ sim 10^{ - 35} $ cm $^3/$ s的热平均横截面。另外,通量可能起源于热液体,该遗物仅包含总暗物质密度的分数$ \ sim10^{ - 9} $。不受独立天体物理观察的不受限制的腐烂的暗物质模型无法充分抑制分子氢,除非在嵌入暗物质阳光中的气云中,这些暗物质云比当前模拟更大,尖锐或更集中。最后,我们探讨了通过包含完整的三维效应的结果如何改变我们的结果。值得注意的是,我们证明,如果$ \ mathrm {h} _2 $自我屏蔽小于本工作中使用的保守估计,那么歼灭和衰减的暗物质模型的范围可能会导致直接崩溃。
Quasars observed at redshifts $z\sim 6-7.5$ are powered by supermassive black holes which are too large to have grown from early stellar remnants without efficient super-Eddington accretion. A proposal for alleviating this tension is for dust and metal-free gas clouds to have undergone a process of direct collapse, producing black hole seeds of mass $M_\textrm{seed}\sim10^5 M_\odot$ around redshift $z \sim 17$. For direct collapse to occur, a large flux of UV photons must exist to photodissociate molecular hydrogen, allowing the gas to cool slowly and avoid fragmentation. We investigate the possibility of sub-keV mass dark matter decaying or annihilating to produce the UV flux needed to cause direct collapse. We find that annihilating dark matter with a mass in the range of $13.6 \textrm{ eV} \le m_{dm} \le 20 \textrm{ eV}$ can produce the required flux while avoiding existing constraints. A non-thermally produced dark matter particle which comprises the entire dark matter abundance requires a thermally averaged cross section of $\langleσv \rangle \sim 10^{-35}$ cm$^3/$s. Alternatively, the flux could originate from a thermal relic which comprises only a fraction $\sim10^{-9}$ of the total dark matter density. Decaying dark matter models which are unconstrained by independent astrophysical observations are unable to sufficiently suppress molecular hydrogen, except in gas clouds embedded in dark matter halos which are larger, cuspier, or more concentrated than current simulations predict. Lastly, we explore how our results could change with the inclusion of full three-dimensional effects. Notably, we demonstrate that if the $\mathrm{H}_2$ self-shielding is less than the conservative estimate used in this work, the range of both annihilating and decaying dark matter models which can cause direct collapse is significantly increased.