论文标题
一种标准化AI公平评估的七层模型
A Seven-Layer Model for Standardising AI Fairness Assessment
论文作者
论文摘要
问题陈述:AI公平规则和基准的标准化是具有挑战性的,因为AI公平和其他道德要求取决于多种因素,例如上下文,用例,AI系统类型等。在本文中,我们详细阐述了AI系统在其生命周期的每个阶段,从成立到其使用情况都容易产生偏见,并且所有阶段都需要适当的注意来减轻AI偏见。我们需要一种标准化的方法来处理每个阶段的AI公平性。差距分析:虽然AI公平是一个热门的研究主题,但通常缺少AI公平的整体策略。大多数研究人员仅专注于AI模型建设的一些方面。同行评审表明,对数据集,公平指标和算法偏见的偏见过多的关注。在此过程中,影响AI公平性的其他方面被忽略。提出的解决方案是:我们提出了一种以开放系统互连(OSI)模型启发的新型七层模型形式的综合方法,以标准化AI公平处理。尽管各个方面存在差异,但大多数AI系统都有相似的模型构建阶段。提出的模型将AI系统生命周期分为七个抽象层,每个层都对应于定义明确的AI模型构建或使用阶段。我们还为每一层提供清单,并故意每一层的潜在偏差及其缓解方法。这项工作将促进AI公平规则和基准测试参数的层面标准化。
Problem statement: Standardisation of AI fairness rules and benchmarks is challenging because AI fairness and other ethical requirements depend on multiple factors such as context, use case, type of the AI system, and so on. In this paper, we elaborate that the AI system is prone to biases at every stage of its lifecycle, from inception to its usage, and that all stages require due attention for mitigating AI bias. We need a standardised approach to handle AI fairness at every stage. Gap analysis: While AI fairness is a hot research topic, a holistic strategy for AI fairness is generally missing. Most researchers focus only on a few facets of AI model-building. Peer review shows excessive focus on biases in the datasets, fairness metrics, and algorithmic bias. In the process, other aspects affecting AI fairness get ignored. The solution proposed: We propose a comprehensive approach in the form of a novel seven-layer model, inspired by the Open System Interconnection (OSI) model, to standardise AI fairness handling. Despite the differences in the various aspects, most AI systems have similar model-building stages. The proposed model splits the AI system lifecycle into seven abstraction layers, each corresponding to a well-defined AI model-building or usage stage. We also provide checklists for each layer and deliberate on potential sources of bias in each layer and their mitigation methodologies. This work will facilitate layer-wise standardisation of AI fairness rules and benchmarking parameters.