论文标题

精神扩散:船只墙成像的基于精神驱动的分数生成建模

SPIRiT-Diffusion: SPIRiT-driven Score-Based Generative Modeling for Vessel Wall imaging

论文作者

Cao, Chentao, Cui, Zhuo-Xu, Cheng, Jing, Jia, Sen, Zheng, Hairong, Liang, Dong, Zhu, Yanjie

论文摘要

扩散模型是图像生成中最先进的方法,已成功应用于MRI重建。但是,现有方法不考虑MRI数据多型元素获取的特征。因此,我们根据精神迭代重建算法提供了一种新的扩散模型,称为精神扩散。具体而言,精神扩散是通过分数匹配来表征线圈图像的先前分布,并表征了基于自一致性的线圈之间的k空间冗余先验。使用足够的先前约束,我们在颅内和颈动脉壁成像数据集上实现了优越的重建结果。

Diffusion model is the most advanced method in image generation and has been successfully applied to MRI reconstruction. However, the existing methods do not consider the characteristics of multi-coil acquisition of MRI data. Therefore, we give a new diffusion model, called SPIRiT-Diffusion, based on the SPIRiT iterative reconstruction algorithm. Specifically, SPIRiT-Diffusion characterizes the prior distribution of coil-by-coil images by score matching and characterizes the k-space redundant prior between coils based on self-consistency. With sufficient prior constraint utilized, we achieve superior reconstruction results on the joint Intracranial and Carotid Vessel Wall imaging dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源