论文标题

NISQ时代的中间Qutrits强大的量子算术操作

Robust Quantum Arithmetic Operations with Intermediate Qutrits in the NISQ-era

论文作者

Saha, Amit, Chattopadhyay, Anupam, Chakrabarti, Amlan

论文摘要

由于其渐近优势,该NISQ时代(嘈杂的中等规模量子)中的许多科学发展已提高了量子算法的重要性。对于几种量子算法中的资源估计,算术操作至关重要。由于资源报告为许多带有Ancilla的Toffoli大门或T门,因此在二进制量子系统中完成了算术操作的几种有效实现,例如加法/减法,乘法/除法,平方根等。最近,已经表明,中间QUTRIT可以在无actilla的边界区域中使用,从而使我们能够在那里有效运作。为了实现所有上述量子算术操作的有效实现,就门数和电路深度而没有T门和Ancilla,我们在本文中包括了一种中间QUTRIT方法。未来的研究旨在降低成本,同时考虑到计算任务的算术操作,这可能是我们使用中级QUTRIT的资源估算来指导的。因此,根据基本算术电路进行了研究。中间QUTRIT方法需要访问更高的能量水平,从而使设计容易受到错误的影响。然而,我们证明,误差概率的百分比降低是显着的,因为与仅量子合作作品相比,我们通过降低电路深度来实现电路效率。

Numerous scientific developments in this NISQ-era (Noisy Intermediate Scale Quantum) have raised the importance for quantum algorithms relative to their conventional counterparts due to its asymptotic advantage. For resource estimates in several quantum algorithms, arithmetic operations are crucial. With resources reported as a number of Toffoli gates or T gates with/without ancilla, several efficient implementations of arithmetic operations, such as addition/subtraction, multiplication/division, square root, etc., have been accomplished in binary quantum systems. More recently, it has been shown that intermediate qutrits may be employed in the ancilla-free frontier zone, enabling us to function effectively there. In order to achieve efficient implementation of all the above-mentioned quantum arithmetic operations with regard to gate count and circuit-depth without T gate and ancilla, we have included an intermediate qutrit method in this paper. Future research aiming at reducing costs while taking into account arithmetic operations for computing tasks might be guided by our resource estimations using intermediate qutrits. Therefore, the enhancements are examined in relation to the fundamental arithmetic circuits. The intermediate qutrit approach necessitates access to higher energy levels, making the design susceptible to errors. We nevertheless demonstrate that the percentage decrease in the probability of error is significant due to the fact that we achieve circuit efficiency by reducing circuit-depth in comparison to qubit-only works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源