论文标题

内部空间和ryu-takayanagi表面的纠缠熵

Entanglement Entropy in Internal Spaces and Ryu-Takayanagi Surfaces

论文作者

Das, Sumit R., Kaushal, Anurag, Mandal, Gautam, Nanda, Kanhu Kishore, Radwan, Mohamed Hany, Trivedi, Sandip P.

论文摘要

我们研究与内部空间的区域($ r $)相关的最小面积表面。例如,对于涉及渐近$ AD $空间和内部空间$ k $的扭曲产品,该区域$ r $位于$ k $中,而表面则以$ \ partial r $ $ $ $ $。我们发现,在翘曲的存在下,可以避免Graham和Karch的结果,并且有时对于一般的区域$ r $而言,这种表面可能存在。当这种扭曲的产物几何形状来自较高维度的渐近广告中,我们认为表面面积可能与边界理论内部自由度的纠缠所产生的熵有关。我们研究了几个示例,包括涉及$ ads_2 $的扭曲或直接产品,或具有内部空间的更高维度$ ads $ spaces,$ k = r^m,s^m $; $ dp $ brane几何形状及其近地平线限制;还有几个几何形状,带有紫外线切口。我们发现这种RT表面通常存在,并且可以是系统的有用探针,从而揭示了有关有限长度相关,热力学和纠缠的信息。我们还对这种表面在批量重建中可以发挥的作用及其与边界理论中观测值的亚代甲的关系做出了一些初步观察。

We study minimum area surfaces associated with a region, $R$, of an internal space. For example, for a warped product involving an asymptotically $AdS$ space and an internal space $K$, the region $R$ lies in $K$ and the surface ends on $\partial R$. We find that the result of Graham and Karch can be avoided in the presence of warping, and such surfaces can sometimes exist for a general region $R$. When such a warped product geometry arises in the IR from a higher dimensional asymptotic AdS, we argue that the area of the surface can be related to the entropy arising from entanglement of internal degrees of freedom of the boundary theory. We study several examples, including warped or direct products involving $AdS_2$, or higher dimensional $AdS$ spaces, with the internal space, $K=R^m, S^m$; $Dp$ brane geometries and their near horizon limits; and several geometries with a UV cut-off. We find that such RT surfaces often exist and can be useful probes of the system, revealing information about finite length correlations, thermodynamics and entanglement. We also make some preliminary observations about the role such surfaces can play in bulk reconstruction, and their relation to subalgebras of observables in the boundary theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源