论文标题
SEM-O-RAN:Nextg边缘辅助移动系统的语义和灵活的O-Ran切片
SEM-O-RAN: Semantic and Flexible O-RAN Slicing for NextG Edge-Assisted Mobile Systems
论文作者
论文摘要
5G和BEECHER Cellular Networks(NextG)将支持不断执行资源规模的边缘辅助深度学习(DL)任务。为此,将需要仔细“切成”无线电访问网络(RAN)资源,以满足异质应用要求,同时最大程度地减少RAN使用情况。现有的切片框架将每个DL任务视为平等而僵化的定义为每个任务分配的资源,从而导致次优性能。在本文中,我们提出了SEM-O-RAN,这是Nextg Open Rans的第一个语义和灵活的切片框架。我们的关键直觉是,由于目标类的语义性质,不同的DL分类器可以忍受不同级别的图像压缩。因此,可以在语义上应用压缩,以便可以最大程度地减少网络负载。此外,灵活性使SEM-O-RAN可以考虑多个边缘分配,从而导致相同的任务相关性能,这可以显着提高全系统性能,因为可以分配更多的任务。首先,我们在数学上制定了语义柔性边缘切片问题(SF-ESP),证明它是NP硬化的,并提供了一种近似算法来有效地解决它。然后,我们通过最先进的多对象检测(YOLOX)和图像分段(Bisenet V2)以及在圆顶质测试中进行的现实世界实验来评估SEM-ORAN的性能。我们的结果表明,SEM-O-RAN在最新情况下将分配的任务数量提高了169%。
5G and beyond cellular networks (NextG) will support the continuous execution of resource-expensive edge-assisted deep learning (DL) tasks. To this end, Radio Access Network (RAN) resources will need to be carefully "sliced" to satisfy heterogeneous application requirements while minimizing RAN usage. Existing slicing frameworks treat each DL task as equal and inflexibly define the resources to assign to each task, which leads to sub-optimal performance. In this paper, we propose SEM-O-RAN, the first semantic and flexible slicing framework for NextG Open RANs. Our key intuition is that different DL classifiers can tolerate different levels of image compression, due to the semantic nature of the target classes. Therefore, compression can be semantically applied so that the networking load can be minimized. Moreover, flexibility allows SEM-O-RAN to consider multiple edge allocations leading to the same task-related performance, which significantly improves system-wide performance as more tasks can be allocated. First, we mathematically formulate the Semantic Flexible Edge Slicing Problem (SF-ESP), demonstrate that it is NP-hard, and provide an approximation algorithm to solve it efficiently. Then, we evaluate the performance of SEM-O-RAN through extensive numerical analysis with state-of-the-art multi-object detection (YOLOX) and image segmentation (BiSeNet V2), as well as real-world experiments on the Colosseum testbed. Our results show that SEM-O-RAN improves the number of allocated tasks by up to 169% with respect to the state of the art.