论文标题

基于非线性偏微分方程告知的高斯过程的参数推断

Parameter Inference based on Gaussian Processes Informed by Nonlinear Partial Differential Equations

论文作者

Li, Zhaohui, Yang, Shihao, Wu, Jeff

论文摘要

部分微分方程(PDE)广泛用于描述物理和工程现象。 PDE中涉及的一些关键参数代表具有重要科学解释的某些物理特性,很难直接测量。从相关物理量的嘈杂和稀疏实验数据中估算这些参数是一项重要任务。 PDE参数推断的许多方法都涉及通过算法(例如有限元方法)进行PDE的数值解决方案的大量评估,这些方法可能很耗时,尤其是对于非线性PDE。在本文中,我们提出了一种新的方法,用于推断PDE中未知参数的推断,称为基于PDE的高斯过程(PIGP)参数推理方法。通过将PDE解决方案建模为高斯过程(GP),我们得出了由(线性)PDE结构引起的歧管约束,因此在约束下,GP满足PDE。对于非线性PDE,我们提出了一种增强方法,将非线性PDE转换为所有衍生物中的等效PDE系统线性,我们的基于PIGP的方法可以对其进行处理。所提出的方法可以应用于广泛的非线性PDE。基于PIGP的方法可以应用于具有未观察到组件的多维PDE系统和PDE系统。像常规的贝叶斯方法一样,该方法可以为未知参数和PDE解决方案提供不确定性定量。基于PIGP的方法还完全绕过了PDE的数值求解器。通过来自不同领域的几个申请示例证明了所提出的方法。

Partial differential equations (PDEs) are widely used for the description of physical and engineering phenomena. Some key parameters involved in PDEs, which represent certain physical properties with important scientific interpretations, are difficult or even impossible to measure directly. Estimating these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations for numerical solutions to PDE through algorithms such as the finite element method, which can be time-consuming, especially for nonlinear PDEs. In this paper, we propose a novel method for the inference of unknown parameters in PDEs, called the PDE-Informed Gaussian Process (PIGP) based parameter inference method. Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that, under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transforms the nonlinear PDE into an equivalent PDE system linear in all derivatives, which our PIGP-based method can handle. The proposed method can be applied to a broad spectrum of nonlinear PDEs. The PIGP-based method can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. Like conventional Bayesian approaches, the method can provide uncertainty quantification for both the unknown parameters and the PDE solution. The PIGP-based method also completely bypasses the numerical solver for PDEs. The proposed method is demonstrated through several application examples from different areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源