论文标题

远程对称排除的扩散波动和缓慢的屏障

Diffusive fluctuations of long-range symmetric exclusion with a slow barrier

论文作者

Cardoso, Pedro, GonÇAlves, Patrícia, JimÉnez-Oviedo, Byron

论文摘要

在本文中,我们获得了跳远的$ \ Mathbb {z} $中对称排除过程的平衡波动。从$ x $到$ y $跳跃的过渡概率与$ | x-y |^{ - γ-1} $成比例。在这里,我们限于选择$γ\ geq 2 $,以便系统具有扩散行为。此外,当粒子在$ \ mathbb {z} _ { - }^{*} $和$ \ mathbb n $之间移动时,$αn^{ - β} $将跳跃速度放慢速度,其中$α> 0 $,$α> 0 $,$β\ geq 0 $ n $ n $ and $ n $是量表参数。根据$β$和$γ$的值,我们获得了几个随机部分微分方程,对应于没有边界条件的热方程,或者与罗宾边界条件或诺伊曼边界条件。

In this article we obtain the equilibrium fluctuations of a symmetric exclusion process in $\mathbb{Z}$ with long jumps. The transition probability of the jump from $x$ to $y$ is proportional to $|x-y|^{-γ-1}$. Here we restrict to the choice $γ\geq 2$ so that the system has a diffusive behavior. Moreover, when particles move between $\mathbb{Z}_{-}^{*}$ and $\mathbb N$, the jump rates are slowed down by a factor $αn^{-β}$, where $α>0$, $β\geq 0$ and $n$ is the scaling parameter. Depending on the values of $β$ and $γ$, we obtain several stochastic partial differential equations, corresponding to a heat equation without boundary conditions, or with Robin boundary conditions or Neumann boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源