论文标题
对DOMBI的猜想中的添加剂数理论的反面样本
Counterexamples to a Conjecture of Dombi in Additive Number Theory
论文作者
论文摘要
我们从添加数理论中反驳了2002年DOMBI的猜想。更准确地说,我们找到了$ \ subbb {n} $的集合的示例,并带有$ \ mathbb {n} \ setMinus a $ a $是无限的,但是序列$ n \ rightArrow | \ \ \ {(a,b,b,c)仅使用$ a $的元素计算$ 3 $ compositions的数量,严格增加。
We disprove a 2002 conjecture of Dombi from additive number theory. More precisely, we find examples of sets $A \subset \mathbb{N}$ with the property that $\mathbb{N} \setminus A$ is infinite, but the sequence $n \rightarrow |\{ (a,b,c) \, : \, n=a+b+c \text{ and } a,b,c \in A \}|$, counting the number of $3$-compositions using elements of $A$ only, is strictly increasing.