论文标题

Hecke代数和Markov二元性的表示,用于相互作用的粒子系统

Representations of Hecke algebras and Markov dualities for interacting particle systems

论文作者

Povolotsky, Alexander, Pyatov, Pavel, Tribe, Roger, Westbury, Bruce, Zaboronski, Oleg

论文摘要

$ \ mathbb {z} $上的许多连续反应扩散模型(歼灭或融合随机步行,排除过程,选民模型)接纳了一组丰富的马尔可夫二重性函数,这些功能决定了单个时间分布。这些模型的一个共同特征是它们的发电机由两个站点IDEMPOTENT运算符的总和给出。在本文中,我们将所有连续时间Markov在$ \ {0,1 \}^{\ Mathbb {z}} $上进行了分类,尽管为了简化我们仅考虑左右跳跃速率相等的模型,但其发电机具有此属性。分类导致六个熟悉的模型和三个例外模型。除了特殊模型以外的所有生成器都属于无限的尺寸Hecke代数,并且二元性函数似乎是该Hecke代数的小维不可减少表示形式的跨度向量。第二个分类探讨了由两个站点运营商构建的生成器,使Hecke代数关系满足。二元函数是Hecke代数的构型和坐标表示之间的交织在一起,这导致了Hecke代数的新型坐标表示。标准的自给自足过程导致与不保留颗粒数量的粒子系统相对应的年轻保险箱方程的新解。

Many continuous reaction-diffusion models on $\mathbb{Z}$ (annihilating or coalescing random walks, exclusion processes, voter models) admit a rich set of Markov duality functions which determine the single time distribution. A common feature of these models is that their generators are given by sums of two-site idempotent operators. In this paper, we classify all continuous time Markov processes on $\{0,1\}^{\mathbb{Z}}$ whose generators have this property, although to simplify the calculations we only consider models with equal left and right jumping rates. The classification leads to six familiar models and three exceptional models. The generators of all but the exceptional models turn out to belong to an infinite dimensional Hecke algebra, and the duality functions appear as spanning vectors for small-dimensional irreducible representations of this Hecke algebra. A second classification explores generators built from two site operators satisfying the Hecke algebra relations. The duality functions are intertwiners between configuration and co-ordinate representations of Hecke algebras, which results in a novel co-ordinate representations of the Hecke algebra. The standard Baxterisation procedure leads to new solutions of the Young-Baxter equation corresponding to particle systems which do not preserve the number of particles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源