论文标题
迈向2D理性SCFT的理论特征:II
Towards Hodge Theoretic Characterizations of 2d Rational SCFTs: II
论文作者
论文摘要
S. Gukov和C. vafa在1+1个维度上对1+1个维度上有理超符号的场理论(SCFT)进行表征。文章[arxiv:2205.10299]完善了这个想法,并为$ t^4 $ -target n =(1,1)SCFT提取了一组必要条件,以合理;但是,仅付出了部分努力来研究它是否构成足够的条件。事实证明,[arxiv:2205.10299]中的一组条件不够,并且在$ t^4 $的情况下,它通过添加更多条件而成为一组必要和充分的条件。镜像中的Strominger-YAU- Zaslow振动在那里起着至关重要的作用。最后,我们还提出了Gukov的精致版本 - Vafa对General Ricci-Flat Kahler目标空间的想法。
A characterization of rational superconformal field theories (SCFTs) on 1+1 dimensions with Ricci-flat Kahler targets was proposed by S. Gukov and C. Vafa in terms of the Hodge structure of the target space. The article [arXiv:2205.10299] refined this idea and extracted a set of necessary conditions for a $T^4$-target N=(1,1) SCFT to be rational; only a partial effort was made, however, to study whether it also constitutes a sufficient condition. It turns out that the set of conditions in [arXiv:2205.10299] is not sufficient, and that it becomes a set of necessary and sufficient conditions by adding one more condition in the case of $T^4$. The Strominger--Yau--Zaslow fibration in the mirror correspondence plays an essential role there. At the end, we also propose a refined version of Gukov--Vafa's idea for general Ricci-flat Kahler target spaces.