论文标题

提出的方法将连续力学与爱因斯坦场方程相结合

Proposed method of combining continuum mechanics with Einstein Field Equations

论文作者

Ogonowski, Piotr

论文摘要

本文提出了对相对论连续性力学的修正案,该修正案介绍了密度张量与时空曲率之间的关系。带有电磁场的系统的对称应力能量张量的制剂导致了爱因斯坦磁场方程的溶液,表明电磁场张量和度量张量之间存在关系。在此EFE溶液中,宇宙常数与电磁场张量的不变性有关,并且会出现其他拉力,取决于系统中包含的真空能。在平坦的Minkowski时空中,提出的应力 - 能量张量消失的四变化表达了相对论的Cauchy的动量方程,从而导致力密度的出现,可以发展并参数化以获得已知的相互作用。还获得了带有场和力的时空之间的变换方程,以及弯曲的时空繁殖,从所考虑的磁场产生的运动产生的运动,这允许使用新磁场扩展溶液。

The article proposes an amendment to the relativistic continuum mechanics which introduces the relationship between density tensors and the curvature of spacetime. The resulting formulation of a symmetric stress-energy tensor for a system with an electromagnetic field, leads to the solution of Einstein Field Equations indicating a relationship between the electromagnetic field tensor and the metric tensor. In this EFE solution, the cosmological constant is related to the invariant of the electromagnetic field tensor, and additional pulls appear, dependent on the vacuum energy contained in the system. In flat Minkowski spacetime, the vanishing four-divergence of the proposed stress-energy tensor expresses relativistic Cauchy's momentum equation, leading to the emergence of force densities which can be developed and parameterized to obtain known interactions. Transformation equations were also obtained between spacetime with fields and forces, and a curved spacetime reproducing the motion resulting from the fields under consideration, which allows for the extension of the solution with new fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源