论文标题

为建议和其他应用程序建模时间序列和空间数据

Modeling Time-Series and Spatial Data for Recommendations and Other Applications

论文作者

Gupta, Vinayak

论文摘要

通过本文中描述的研究方向,我们试图解决设计推荐系统的关键挑战,这些系统可以理解连续时间事件序列的动态。我们遵循一种基础方法,即,首先,我们解决了由于将CTE数据质量较差而引起的问题。稍后,我们处理设计准确的推荐系统的任务。为了提高CTES数据的质量,我们解决了在时间序列中克服丢失事件的基本问题。此外,为了提供准确的序列建模框架,我们设计了利益点建议的解决方案,即可以处理用户对各种POI检查的空间移动性数据的模型,并为下一个签入的候选位置推荐候选位置。最后,我们强调说,所提出的模型的功能可以具有推荐系统以外的应用程序,并且我们扩展了它们的能力,以设计用于大规模CTES检索和人类活动预测的解决方案。本文的重要部分使用了通过神经标记的时间点过程(MTPP)对CTE的基本分布进行建模的想法。传统的MTPP模型是使用固定公式来捕获一系列离散事件的生成机制的随机过程。相反,神经MTPP将点过程文献中的基本思想与现代深度学习体系结构相结合。深度学习模型作为准确的功能近似器的能力导致了神经MTPP模型的预测能力的显着提高。在本文中,我们为上述现实世界应用程序使用并为当前的MTPP框架提供了几种基于神经网络的增强。

With the research directions described in this thesis, we seek to address the critical challenges in designing recommender systems that can understand the dynamics of continuous-time event sequences. We follow a ground-up approach, i.e., first, we address the problems that may arise due to the poor quality of CTES data being fed into a recommender system. Later, we handle the task of designing accurate recommender systems. To improve the quality of the CTES data, we address a fundamental problem of overcoming missing events in temporal sequences. Moreover, to provide accurate sequence modeling frameworks, we design solutions for points-of-interest recommendation, i.e., models that can handle spatial mobility data of users to various POI check-ins and recommend candidate locations for the next check-in. Lastly, we highlight that the capabilities of the proposed models can have applications beyond recommender systems, and we extend their abilities to design solutions for large-scale CTES retrieval and human activity prediction. A significant part of this thesis uses the idea of modeling the underlying distribution of CTES via neural marked temporal point processes (MTPP). Traditional MTPP models are stochastic processes that utilize a fixed formulation to capture the generative mechanism of a sequence of discrete events localized in continuous time. In contrast, neural MTPP combine the underlying ideas from the point process literature with modern deep learning architectures. The ability of deep-learning models as accurate function approximators has led to a significant gain in the predictive prowess of neural MTPP models. In this thesis, we utilize and present several neural network-based enhancements for the current MTPP frameworks for the aforementioned real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源