论文标题

S2S-WTV:使用加权总变异自制学习的地震数据噪声衰减

S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation Regularized Self-Supervised Learning

论文作者

Xu, Zitai, Luo, Yisi, Wu, Bangyu, Meng, Deyu

论文摘要

地震数据经常由于环境因素而引起的严重噪音,这严重影响了随后的应用。传统的手工制作的Denoiser(例如过滤器和正规化)利用可解释的域知识来设计可通用的Denoising技术,而它们的代表能力可能不如深度学习的DeNoisers,可以从丰富的培训对中学习复杂而代表的Deno映射。但是,由于缺乏高质量的培训对,深度学习的DeNoiser可能会在各种情况下维持一些泛化问题。在这项工作中,我们提出了一种自我监督的方法,该方法结合了深层denoiser的能力和手工制作的正则化的概括能力,以进行地震数据随机噪声衰减。具体而言,我们通过仅使用观察到的嘈杂数据来利用自我2自己(S2S)学习框架,以痕量遮盖策略来进行地震数据。可行的,我们建议加权总变异(WTV),以进一步捕获地震数据的水平局部平滑结构。我们的方法被称为S2S-WTV,享有由自欺欺人的深层网络带来的高度代表能力,也享有手工制作的WTV常规化器的良好概括能力和自我监督的性质。因此,我们的方法可以更有效,稳定地消除随机噪声,并保留清洁信号的细节和边缘。为了解决S2S-WTV优化模型,我们引入了基于基于的方向乘数法(ADMM)算法。与最先进的传统和深度学习的地震数据剥夺方法相比,关于合成和田间噪声数据的广泛实验证明了我们方法的有效性。

Seismic data often undergoes severe noise due to environmental factors, which seriously affects subsequent applications. Traditional hand-crafted denoisers such as filters and regularizations utilize interpretable domain knowledge to design generalizable denoising techniques, while their representation capacities may be inferior to deep learning denoisers, which can learn complex and representative denoising mappings from abundant training pairs. However, due to the scarcity of high-quality training pairs, deep learning denoisers may sustain some generalization issues over various scenarios. In this work, we propose a self-supervised method that combines the capacities of deep denoiser and the generalization abilities of hand-crafted regularization for seismic data random noise attenuation. Specifically, we leverage the Self2Self (S2S) learning framework with a trace-wise masking strategy for seismic data denoising by solely using the observed noisy data. Parallelly, we suggest the weighted total variation (WTV) to further capture the horizontal local smooth structure of seismic data. Our method, dubbed as S2S-WTV, enjoys both high representation abilities brought from the self-supervised deep network and good generalization abilities of the hand-crafted WTV regularizer and the self-supervised nature. Therefore, our method can more effectively and stably remove the random noise and preserve the details and edges of the clean signal. To tackle the S2S-WTV optimization model, we introduce an alternating direction multiplier method (ADMM)-based algorithm. Extensive experiments on synthetic and field noisy seismic data demonstrate the effectiveness of our method as compared with state-of-the-art traditional and deep learning-based seismic data denoising methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源