论文标题
StyleID:匿名面孔的身份分开
StyleID: Identity Disentanglement for Anonymizing Faces
论文作者
论文摘要
机器学习模型的隐私是阻碍人工智能(AI)广泛采用的剩余挑战之一。本文在包含面孔的图像数据集的上下文中考虑了此问题。例如,由于它们在自动驾驶汽车的培训中以及监视系统生成的大量数据,因此,此类数据集的匿名化变得越来越重要。虽然大多数先前的工作通过修改像素空间中的身份特征来否定面部图像,但我们将图像投影到生成对抗网络(GAN)模型的潜在空间上,找到提供最大的身份分离的功能,然后在潜在的空间,Pixel空间或两者中操纵这些功能。本文的主要贡献是设计具有功能的匿名框架styleid的设计,该框架可以保护个人的身份,同时保留图像数据集中原始面的尽可能多的特征。作为贡献的一部分,我们提出了一个新颖的分解指标,三种补充的分解方法以及对身份分离的新见解。 StyleID提供可调的隐私,具有低计算复杂性,并且显示出优于当前最新解决方案。
Privacy of machine learning models is one of the remaining challenges that hinder the broad adoption of Artificial Intelligent (AI). This paper considers this problem in the context of image datasets containing faces. Anonymization of such datasets is becoming increasingly important due to their central role in the training of autonomous cars, for example, and the vast amount of data generated by surveillance systems. While most prior work de-identifies facial images by modifying identity features in pixel space, we instead project the image onto the latent space of a Generative Adversarial Network (GAN) model, find the features that provide the biggest identity disentanglement, and then manipulate these features in latent space, pixel space, or both. The main contribution of the paper is the design of a feature-preserving anonymization framework, StyleID, which protects the individuals' identity, while preserving as many characteristics of the original faces in the image dataset as possible. As part of the contribution, we present a novel disentanglement metric, three complementing disentanglement methods, and new insights into identity disentanglement. StyleID provides tunable privacy, has low computational complexity, and is shown to outperform current state-of-the-art solutions.