论文标题
在均匀磁场下的电子和激发态的第一量化的特征层
First-quantized eigensolver for ground and excited states of electrons under a uniform magnetic field
论文作者
论文摘要
第一量化的eigensolver(FQE)是最近提出的量子计算框架,用于基于概率想象的时间演化获得相互作用的电子系统的基态。在这项研究中,我们提出了一种将均匀磁场引入FQE计算的方法。我们通过资源估计证明,可以根据分配给每个电子的量子数的数量来实现负责磁场的额外电路,从而对整个计算成本的领先顺序产生影响。我们通过使用用于能量本征的过滤电路来通过数值模拟地面和激发态来确认我们方法的有效性。我们还提供衍生电路的通用结构以及基于测量的公式。作为它们的特殊情况,我们可以在电子系统中获得电流密度,以了解磁反应的显微镜起源。
First-quantized eigensolver (FQE) is a recently proposed framework of quantum computation for obtaining the ground state of an interacting electronic system based on probabilistic imaginary-time evolution. In this study, we propose a method for introducing a uniform magnetic field to an FQE calculation. We demonstrate via resource estimation that the additional circuit responsible for the magnetic field can be implemented with a liner depth in terms of the number of qubits assigned to each electron, giving rise to no impact on the leading order of whole computational cost. We confirm the validity of our method via numerical simulations for ground and excited states by employing the filtration circuits for energy eigenstates. We also provide the generic construction of derivative circuits together with measurement-based formulae. As a special case of them, we can obtain the electric-current density in an electronic system to get insights into the microscopic origin of magnetic response.