论文标题
部分可观测时空混沌系统的无模型预测
Multi-Metric AutoRec for High Dimensional and Sparse User Behavior Data Prediction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
User behavior data produced during interaction with massive items in the significant data era are generally heterogeneous and sparse, leaving the recommender system (RS) a large diversity of underlying patterns to excavate. Deep neural network-based models have reached the state-of-the-art benchmark of the RS owing to their fitting capabilities. However, prior works mainly focus on designing an intricate architecture with fixed loss function and regulation. These single-metric models provide limited performance when facing heterogeneous and sparse user behavior data. Motivated by this finding, we propose a multi-metric AutoRec (MMA) based on the representative AutoRec. The idea of the proposed MMA is mainly two-fold: 1) apply different $L_p$-norm on loss function and regularization to form different variant models in different metric spaces, and 2) aggregate these variant models. Thus, the proposed MMA enjoys the multi-metric orientation from a set of dispersed metric spaces, achieving a comprehensive representation of user data. Theoretical studies proved that the proposed MMA could attain performance improvement. The extensive experiment on five real-world datasets proves that MMA can outperform seven other state-of-the-art models in predicting unobserved user behavior data.