论文标题
部分可观测时空混沌系统的无模型预测
Calibration-Free Driver Drowsiness Classification based on Manifold-Level Augmentation
论文作者
论文摘要
嗜睡会降低浓度并增加反应时间,从而导致致命的道路事故。通过脑电图(EEG)监测驾驶员的嗜睡水平并采取行动可能会防止道路事故。 EEG信号有效地监测驾驶员的心理状态,因为它们可以监测大脑动力学。但是,需要提前校准,因为脑电图在受试者之间和内部有所不同。由于给您带来不便,校准降低了脑计算机界面(BCI)的可及性。开发广义分类模型类似于域的概括,该域概括克服了域移位问题。特别是使用数据增强。本文提出了一个无校准的框架,用于使用歧管级增强级的驾驶员嗜睡状态分类。该框架通过利用功能增加了源域的多样性。我们尝试了各种增强方法来改善概括性能。根据实验的结果,我们发现具有较小核大小的更深型模型可改善可推广性。此外,在歧管级别上应用增强层可取得出色的改进。该框架证明了无校准BCI的能力。
Drowsiness reduces concentration and increases response time, which causes fatal road accidents. Monitoring drivers' drowsiness levels by electroencephalogram (EEG) and taking action may prevent road accidents. EEG signals effectively monitor the driver's mental state as they can monitor brain dynamics. However, calibration is required in advance because EEG signals vary between and within subjects. Because of the inconvenience, calibration has reduced the accessibility of the brain-computer interface (BCI). Developing a generalized classification model is similar to domain generalization, which overcomes the domain shift problem. Especially data augmentation is frequently used. This paper proposes a calibration-free framework for driver drowsiness state classification using manifold-level augmentation. This framework increases the diversity of source domains by utilizing features. We experimented with various augmentation methods to improve the generalization performance. Based on the results of the experiments, we found that deeper models with smaller kernel sizes improved generalizability. In addition, applying an augmentation at the manifold-level resulted in an outstanding improvement. The framework demonstrated the capability for calibration-free BCI.