论文标题

部分可观测时空混沌系统的无模型预测

ECG-Based Electrolyte Prediction: Evaluating Regression and Probabilistic Methods

论文作者

Von Bachmann, Philipp, Gedon, Daniel, Gustafsson, Fredrik K., Ribeiro, Antônio H., Lampa, Erik, Gustafsson, Stefan, Sundström, Johan, Schön, Thomas B.

论文摘要

目的:体内电解质浓度水平的不平衡会导致灾难性后果,但是准确且可访问的测量可以改善患者的预后。尽管血液检查提供了准确的测量,但它们具有侵入性,实验室分析可能很慢或无法访问。相比之下,心电图(ECG)是一种广泛采用的工具,快速且易于获取。但是,直接从ECG估计连续电解质浓度的问题并不是很好。因此,我们研究了是否可以将回归方法用于基于ECG的电解质浓度预测。方法:我们探讨了深神经网络(DNN)在此任务中的使用。我们利用包含290000多个ECG的新型数据集分析了四个电解质的回归性能。为了提高理解,我们还研究了从连续预测到极端浓度水平的二元分类的完整范围。为了提高临床实用性,我们最终扩展到概率回归方法,并评估不同的不确定性估计值。结果:我们发现,不同电解质之间的性能在临床上有明显变化,这在电解质的相互作用及其在ECG中的表现在临床上是合理的。我们还将回归准确性与传统机器学习模型的回归准确性进行了比较,证明了DNN的出色性能。结论:离散化可以导致良好的分类性能,但无助于解决预测连续浓度水平的原始问题。尽管概率回归表现出潜在的实际实用性,但不确定性估计值并未特别良好。意义:我们的研究是朝着基于ECG的准确和可靠的电解质浓度水平预测的第一步。

Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG) is a widely adopted tool which is quick and simple to acquire. However, the problem of estimating continuous electrolyte concentrations directly from ECGs is not well-studied. We therefore investigate if regression methods can be used for accurate ECG-based prediction of electrolyte concentrations. Methods: We explore the use of deep neural networks (DNNs) for this task. We analyze the regression performance across four electrolytes, utilizing a novel dataset containing over 290000 ECGs. For improved understanding, we also study the full spectrum from continuous predictions to binary classification of extreme concentration levels. To enhance clinical usefulness, we finally extend to a probabilistic regression approach and evaluate different uncertainty estimates. Results: We find that the performance varies significantly between different electrolytes, which is clinically justified in the interplay of electrolytes and their manifestation in the ECG. We also compare the regression accuracy with that of traditional machine learning models, demonstrating superior performance of DNNs. Conclusion: Discretization can lead to good classification performance, but does not help solve the original problem of predicting continuous concentration levels. While probabilistic regression demonstrates potential practical usefulness, the uncertainty estimates are not particularly well-calibrated. Significance: Our study is a first step towards accurate and reliable ECG-based prediction of electrolyte concentration levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源