论文标题

为通用对象的密集3D形状对应关系学习隐式功能

Learning Implicit Functions for Dense 3D Shape Correspondence of Generic Objects

论文作者

Liu, Feng, Liu, Xiaoming

论文摘要

本文的目的是学习以无监督的方式学习与拓扑相变的通用对象的致密3D形状对应关系。常规隐式函数估计给定形状潜在代码的3D点的占用。取而代之的是,我们的新型隐式函数会产生概率嵌入,以表示零件嵌入空间中的每个3D点。假设相应的点在嵌入式空间中相似,我们通过从嵌入向量到相应的3D点的零件映射实现密集的对应关系。这两个函数均以几种有效和不确定性感知的损失函数共同学习,以实现我们的假设,以及生成形状潜在代码的编码器。在推断期间,如果用户在源形状上选择一个任意点,我们的算法可以自动生成一个置信分数,指示目标形状上是否存在对应关系,以及是否有一个对应的语义点。这种机制固有地使人造物体具有不同的构成。通过无监督的3D语义对应关系和形状分割证明了我们方法的有效性。

The objective of this paper is to learn dense 3D shape correspondence for topology-varying generic objects in an unsupervised manner. Conventional implicit functions estimate the occupancy of a 3D point given a shape latent code. Instead, our novel implicit function produces a probabilistic embedding to represent each 3D point in a part embedding space. Assuming the corresponding points are similar in the embedding space, we implement dense correspondence through an inverse function mapping from the part embedding vector to a corresponded 3D point. Both functions are jointly learned with several effective and uncertainty-aware loss functions to realize our assumption, together with the encoder generating the shape latent code. During inference, if a user selects an arbitrary point on the source shape, our algorithm can automatically generate a confidence score indicating whether there is a correspondence on the target shape, as well as the corresponding semantic point if there is one. Such a mechanism inherently benefits man-made objects with different part constitutions. The effectiveness of our approach is demonstrated through unsupervised 3D semantic correspondence and shape segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源